Ironing in Dynamic Revenue Management: Posted Prices & Biased Auctions *

Rahul Deb † Mallesh M. Pai ‡

October 3, 2012

Abstract
We consider the design of the revenue maximizing mechanism for a seller with a fixed capacity of C units selling over T periods to buyers who arrive over time. The buyers have single unit demand and multi-dimensional private information—both their value for the object and the deadline by which they must make a purchase are unknown to the seller. This contrasts with previous work where buyers have single dimensional private information—deadlines are publicly observed and only values are private. Here, the optimal mechanism can be computed by running a dynamic stochastic knapsack algorithm. However, these mechanisms are only optimal with private deadlines when the calculated allocation rule is monotone—buyers with higher values and later deadlines should be allocated with higher probability. Such monotonicity only arises in very special cases.

By contrast, in the classic static environment of Myerson [7] monotonicity is only violated for ‘irregular’ value distributions. Myerson characterizes the optimal mechanism by a procedure he calls ‘ironing.’ We characterize the optimal mechanism in our general dynamic environment by providing the dynamic counterpart of ironing. We show that only a subset of the monotonicity constraints can bind in a solution of the seller’s dynamic programming problem. The optimal mechanism can be characterized by ‘relaxing’ these constraints with their appropriate dual multiplier. Further, the optimal mechanism can be implemented by a series of posted prices followed by a ‘biased’ auction in the final period where buyers have the auction biased in their favor depending on their arrival time. Our theoretical characterization complements the existing computational approaches for ironing in these settings (e.g. Parkes et al. [10]).

1 Introduction
Sellers often have fixed deadlines by which they must sell to buyers who arrive and leave the market at different instants. Consider, for example, an airline selling tickets for an upcoming flight or a hotel renting rooms for a future date. In both cases, there is a fixed capacity and a date beyond which this capacity has no value. In such an environment, sellers aiming to maximize profits must solve a dynamic problem: they could sell to buyers currently in the market and ‘lock in’ some revenue, or keep the capacity for buyers who may arrive in the future by which time the currently present buyers may have left. Several variants of this problem have been studied in the operations research literature (where it is known as the ‘single leg, multi-period revenue management problem’) and, more recently, in the dynamic mechanism design literature.

Here, we focus on studying the seller optimal mechanism when buyers have multidimensional private information. Specifically, buyers privately know both how much they value the good and how long they plan to stay in the market. Consider the airline ticket example in which some travelers may be willing to delay their purchase for a potentially better deal. For others, the flight may be a part of a larger trip and hence may choose to change plans and not make a purchase if tickets are currently too expensive. The seller’s mechanism must therefore take this into account. This realistic additional aspect of private information considerably complicates the seller’s dynamic revenue management problem and is avoided by the majority of the literature.

IRONING To contextualize our results, we first describe a procedure of mechanism design called ‘ironing’. The celebrated paper of Myerson [7] studies revenue maximizing mechanisms for a seller of a single unit of a good to buyers who privately know their values. In this paper, there are two key insights. The first, the Revelation Principle, reduces the problem to one in which each agent truthfully reveals his type to the seller (as opposed to a bid) and is given incentives to do so. The second insight is the notion of ‘virtual value’- this, roughly speaking, is the buyer’s value minus the cost of the incentives to get him to reveal his type. Myerson’s analysis shows that revenue maximization is the same as maximizing efficiency over vir-
tual values subject to a monotonicity constraint. This constraint requires that higher value types must win the good more often in expectation. Myerson therefore considers two cases. The first, which he calls the ‘regular case’ involves an assumption on the distribution of values such that the monotonicity constraint is satisfied by the solution to the problem of maximizing virtual efficiency.\(^1\) In this case, a knapsack algorithm where buyers’ weights are given by their virtual values can compute the optimal allocation rule.

The other case is more involved. Myerson defines an ‘ironing’ procedure which modifies the virtual values to restore monotonicity.\(^2\) The ironed virtual values can then be used to compute the optimal allocation rule via the same knapsack algorithm.

Dynamic Mechanism Design and Dynamic Ironing Various results in dynamic mechanism design follow the dynamic equivalent of the same technique.\(^3\) The approach of most papers in this field can be described thus. First, an appeal to a generalization of the revelation principle results in an analogous reduction to direct mechanisms as in the static case. Analysis of the resulting dynamic problem reveals a notion of virtual value for the setting at hand. It can therefore be shown that revenue maximization boils down to maximizing virtual efficiency subject to an appropriate ‘monotonicity’ constraint. It is here that the duality ends. There are no ‘natural’ conditions one can impose on the distribution of buyer values to ensure that this monotonicity constraint is satisfied. Further, unlike the static Myerson setting, there is no counterpart to the ironing procedure if monotonicity is violated.

It is toward providing such a counterpart that this paper makes progress. We call our procedure ‘dynamic ironing.’ Standard static ironing modifies the virtual values of buyers to incorporate the Lagrangean values of monotonicity constraints, i.e. Lagrangean duals of incentive compatibility constraints which ensure that buyers report their values truthfully. Our dynamic ironing process analogously modifies virtual values to incorporate Lagrangean duals of the incentive compatibility constraints to get buyers to report their timing parameters, i.e. arrival and deadline, truthfully.

With no guidance from economic theory, progress has been made in computational approaches in interesting dynamic settings— see for example Constantin and Parkes [4], Parkes [9] and Parkes and Duong [10]. These papers restore monotonicity via computational methods (see the discussion in Section 4). While they can perform well in practice they are provably suboptimal. Our theoretical results complement this approach and provide a benchmark for them to be measured against. Moreover, our methodology provides an avenue for the design of computational approaches which can yield higher revenue (again, see discussion in Section 4).

Overview of Model and Results We consider a seller who has a finite capacity \(C\) to sell over \(T\) periods to buyers who arrive over time. Specifically, one buyer arrives in each period, and buyers have a privately known value for a unit and, in addition, privately know whether they are impatient (only present in that period) or patient (present till the final period). The model, arrival processes, and value distributions are all common knowledge among buyers and the seller. Further, at the time of arrival, a buyer knows all past reports made to and allocation decisions made by the mechanism. It is in this setting that we derive the mechanism that maximizes the seller’s expected revenue, with a Bayes-Nash solution concept.

In a simpler model where buyer’s patience is publicly known (we will refer to this as the public deadline benchmark), the seller’s optimal mechanism is easier to characterize. She offers a posted price in each period to impatient buyers arriving in that period, while all patient buyers compete in a standard second price auction with a reserve price in the final period. Of course, this may not remain incentive compatible when, in addition, the buyers’ patience levels are private, and therefore ironing is required. Ironing in environments with multi dimensional private information typically leads to very complex contracts often involving lotteries. Our main result shows that the optimal mechanism in this environment still takes a surprisingly simple form and is therefore practical. There are two distortions over the mechanism we describe above. First, we show that (under mild regularity conditions), the seller still offers posted prices to impatient buyers. However, these posted prices are weakly higher than the public patience case. This makes it less attractive for a patient buyer to misreport himself as impatient. Second, patient buyers are still invited to bid for an auction that is conducted in the final period. However, this auction is biased and need not award the good to the highest bidder—benefits are provided to early arriving patient

\(^1\)Formally, the condition is that the virtual values, \(v - \frac{1-F(v)}{f(v)},\) be non-decreasing in \(v,\) where \(f\) is the density and \(F\) is the CDF of the distribution.

\(^2\)At a technical level, it adds to the virtual value of a buyer the value of the dual variable corresponding to the monotonicity constraint.

\(^3\)A comprehensive survey of the field of dynamic mechanism design is beyond the scope of this paper. We refer the interested reader to excellent surveys by Bergemann and Said [1] and Vohra [12].
buyers for reporting their patience truthfully by distorting the auction in their favor.

In the public deadline benchmark the optimal mechanism is a dynamic stochastic knapsack algorithm: the seller has a knapsack of size C, each buyer has a size of 1, and the ‘reward’ from selecting (giving the good to) a buyer is his virtual value. The algorithm therefore gives a unit to the buyer if the ‘virtual value’ of the buyer exceeds the expected incremental revenue from having one additional unit in the future (computed by dynamic programming). In the private deadline case, the allocation rule computed from this dynamic stochastic knapsack algorithm might violate the incentive compatibility conditions. We show how incentive compatibility can be restored by modifying the ‘reward’ from assigning a buyer. For each period t, and each history of what has transpired up to $t−1$, the mechanism assigns a penalty/bonus $\eta(\bar{H}_{t−1})$. The same dynamic knapsack mechanism is run, however impatient buyers’ virtual values in that period are penalized by $\eta(\bar{H}_{t−1})$, while patient buyers in that period get a bonus of $\eta(\bar{H}_{t−1})$. This η is the dual variable for the incentive compatibility constraint corresponding to a patient buyer arriving in period t with the highest possible value misreporting as impatient.

Related Literature

This paper is closely related to three main papers. The first is the paper of Pai & Vohra [8]. That paper considers a generalization of the model in this one– multiple buyers may arrive in each period, and a buyer may have any private deadline between the current period and the final period. However in this more general setting, they are only able to provide a limited characterization of the optimal mechanism. Specifically, and in contrast with this work, they focus on the case where the buyers’ private information on his deadline plays no role in the optimal mechanism.\footnote{At a technical level, this corresponds to the incentive compatibility constraints corresponding to buyers misreporting their deadline never binding at the optimal solution.}

The conditions they require for this are strong and cannot be stated in terms of primitives of the model. By contrast, we explicitly characterize the optimal mechanism even when deadlines are private information. The second paper is a recent work by Mierendorff [6]. This paper characterizes the optimal mechanism in the same setting as ours, but restricted to 2 periods. Our model is thus a special case of [8] and a generalization of [6]. Like [8] and unlike [6], we consider a model with discrete types. This allows for less technical proofs than those of the continuum-of-types-case. Additionally, the discrete type setting is more amenable to algorithmic analysis.

Finally, Board & Skrzypacz [2] consider a continuous time setting where buyers with private value, but with commonly known identical discount rates, arrive over time. They show the optimal mechanism for the seller can be implemented by a sequence of posted prices over time, coupled with an auction at the end. By contrast, we show that when buyers have additional private information on their level of patience (the counterpart of discounting in their model), the optimal mechanism involves distorting the auction in favor of more patient buyers.

2 Model & Notation

There is a seller with C units of an indivisible good to be sold by time T. Time is discrete.

Buyer Type Space: Buyers arrive and leave over time. A buyer’s type is a 3-tuple with the following components:

1. $v \in V$ is the valuation of the agent for one unit of the good. V, the set of all possible valuations is a finite set of positive numbers. While V can be arbitrarily fine, for economy of notation, we consider $V = \{1, 2, \ldots, q\}$ (which is without loss of generality). Buyers are risk neutral.\footnote{This implies that a buyer with value v who receives the good with probability λ making a payment P gets utility $\lambda v − P$.}

2. $t \leq T$ is the time that the buyer learns of his demand for unit, we will also call it his entry/arrival time.

3. The third component x_t is either i, denoting that the buyer is impatient (present only for the entry period) or p, denoting that he is patient and willing to wait till the last period. An impatient buyer only values a good he receives in the period of his arrival, while a patient buyer’s value for the good does not depend on when he receives it.

The set of possible types who arrive in period t is denoted by the set $T_t = V \times \{t\} \times \{i, p\}$. We abuse notation slightly and define $v(r_t)$, and $x(r_t)$ as the value and patience level corresponding to a type $r_t \in T_t$. We can partition the set T_t into patient types T^p_t and impatient types T^i_t.

Distribution over Types: We assume that in every period t one buyer arrives. It is easy to accommodate probabilistic arrivals in our model, we do not do so here to lessen notation. Further, thinking of the discrete time periods as an approximation to ‘real’ time, it seems reasonable to assume that no two buyers arrive at the same discrete interval if T is large.
A period \(t \) arriving buyer is patient/impatient with probability \(\rho^p_t, \rho^i_t \) where \(\rho^p_t + \rho^i_t = 1 \). A patient period \(t \) buyer has a private value drawn from a cumulative distribution \(F^p_t(\cdot) \) and with density (mass function) \(f^p_t(\cdot) \). An impatient buyer has corresponding distribution \(F^i_t(\cdot) \) with density \(f^i_t(\cdot) \). In what follows, we maintain the following regularity conditions on these distributions:

Definition 2.1. (Regularity Conditions) We assume the following regularity conditions on the distribution of buyer’s types:

1. **Monotone Hazard rate**: Patient buyers arriving in any period have a distribution of values with increasing hazard rate, i.e.

 \[
 \frac{f^p_t(v)}{1 - F^p_t(v)} \text{ is increasing in } v, \forall t.
 \]

2. **Decreasing Density**: Patient buyers arriving in any period have a distribution of values with decreasing density, i.e. \(f^p_t(v) \).

3. **Concave revenue function**: Impatient buyers arriving in any period have a distribution of values such that \(v(1 - F^i_t(v)) \) is concave in \(v \) (formally, has decreasing differences in \(v \)).

Condition 1 is a standard assumption in the mechanism design literature and it is satisfied by almost all commonly used distributions. Condition 2 is employed for technical reasons, and has been seen before in several multidimensional settings. Finally, Condition 3 is simply the discrete analog of requiring the monopoly profit from impatient buyers to be concave in the price. This is a ubiquitous assumption in the pricing literature. The latter condition is the only one required for our results. If either of the former two conditions is not satisfied, the solution can still be characterized by additional (static) ironing in the auction for the final period.

The Mechanism We invoke the revelation principle which allows us to restrict attention to direct revelation mechanisms. In our setting the possible misreports of a type depend on her true type, and therefore a revelation principle does not follow directly from Myerson [7]. An analysis of settings where the set of feasible misreports is dependent on true type was conducted in Green & Laffont [5], and a revelation principle for our setting follows from their analysis. Put differently, this implies that it is without loss of generality for the seller to ask each arriving buyer to reveal her type.

In each period, all past activity is made known to the arriving buyer. In other words, at the time of arrival a buyer knows his own type, past arrivals, and past actions by previous buyers and the mechanism. Each arriving buyer can condition their (mis-)report on this information, i.e. we allow for more possible misreports than a setting in which buyers do not observe activity in the mechanism. At each time period the mechanism decides who will be allocated the good and the payments made by each agent as a function of all previous reports. We now define the mechanism formally.

We begin by defining the relevant histories for the mechanism. We use the variable \(c_{r,t} \) to denote whether a buyer who arrived at period \(\tau \leq t \) has received a good by period \(t \). We set \(c_{r,t} = 1 \) if such an allocation did occur and the if it did not we set \(c_{r,t} = 0 \). Each arriving buyer is asked to report her type \(r_t \in T_t \) (of course, the mechanism needs to provide incentives for the buyer to report her type truthfully).

There are two classes of relevant histories for our mechanism. History \(h_t \) is all reports up to and including \(t \), and all allocation decisions up to period \(t - 1 \). History \(\overline{h}_t \) is the history of all reports and allocations up to and including period \(t \), i.e. relative to \(h_t \) it also contains the allocation(s) made in period \(t \).

Formally:

\[
\overline{h}_t = ((c_{1,t}, \ldots, c_{t,t}),(r_1, \ldots, r_t)),
\]

\[
h_t = (\overline{h}_{t-1}, r_t).
\]

In a slight abuse of notation, we use \(c_{r,t}(\overline{h}_t) \) to denote whether in history \(\overline{h}_t \) a buyer arriving in \(\tau \) is allocated at period \(t \) or before. Similarly, we use \(r_{\tau}(h_t) \) to denote the announced type of the buyer who arrived in period \(\tau \leq t \) according to history \(h_t \). We will let \(H_t \) denote the set of all feasible ‘beginning of period \(t \)’ histories, and \(\overline{H}_t \) denote all feasible ‘end of period \(t \)’ histories.

The seller announces a mechanism before the first period. A mechanism is a set of functions

\[
a_{r,t} : H_t \rightarrow [0,1], \quad o_{r,t} : H_t \rightarrow \mathbb{R}.
\]

In words, \(a_{r,t}(h_t) \) is the probability with which the buyer who arrived in period \(t' \leq t \) and reported \(r_{t'}(h_t) \) expects to get the good in period \(t \) when history \(h_t \)

6Note that in our model, there are patient and impatient buyers. As we pointed out earlier, we show that the optimal mechanism is a posted price for impatient buyers, and a biased auction for patient buyers. It is easy to relax the information requirement requiring that patient buyers see all bids submitted to the biased auction and the number of units remaining before submitting their bid. Impatient buyers only need see the posted price offered to them. If buyers see less information, there are fewer constraints the seller must account for, and the optimal auction may be different. See also the discussion in Section 4.
has realized. Similarly, $q_{t,i}(h_t)$ is the amount that this buyer has to pay in period t. Since buyers are risk neutral, they only care about their expected (interim) allocation probabilities and their expected payments, where expectations are taken over the truthful reports of all other players. We denote these by

$$A_t(\overline{h}_{t-1}, r_t) = \sum_{\tau = t}^T \mathbb{E}_{h_t}[a_{t,\tau}(h_{\tau})|(\overline{h}_{t-1}, r_t)],$$

$$P_t(\overline{h}_{t-1}, r_t) = \sum_{\tau = t}^T \mathbb{E}_{h_t}[p_{t,\tau}(h_{\tau})|(\overline{h}_{t-1}, r_t)].$$

Notice that the above expectations are conditioned on the current history $(\overline{h}_{t-1}, r_t)$. Thus the expected utility of a buyer arriving in period t with value v who makes a report r_t is

$$vA_t(\overline{h}_{t-1}, r_t) - P_t(\overline{h}_{t-1}, r_t).$$

Importantly for the seller, the choice of a’s also determines the distribution of future histories that realize, by changing how many units remain to be allotted in subsequent periods.

Seller’s Problem The seller’s problem is to maximize expected revenue subject to a few constraints. The first few are relatively straightforward. Individual rationality (IR) requires that the expected profit from participating is non-negative.\(^7\)

$$\forall r_t \in T_t, \forall \overline{h}_{t-1} :$$

$$v(r_t)A_t(\overline{h}_{t-1}, r_t) - P_t(\overline{h}_{t-1}, r_t) \geq 0.$$

$$\text{(IR)}$$

The next feasibility constraint simply requires that, at all histories, the seller can never assign more goods than his remaining inventory:

$$\forall r_t \in T_t, \forall \overline{h}_{t-1} :$$

$$\sum_{\tau = 1}^t a_{\tau,t}(\overline{h}_{t-1}, r_t) \leq C - \sum_{\tau = 1}^{t-1} c_{\tau,t-1}(\overline{h}_{t-1}).$$

$$\text{(Cap)}$$

We impose some standard restrictions on allocations--allocation probabilities must lie between 0 and 1 at all histories, and no buyer is allotted more than one unit.

$$\forall h_t, \forall \tau \leq t :$$

$$0 \leq a_{\tau,t}(h_t) \leq 1$$

$$\forall \overline{h}_{t-1}, \forall \tau \leq t, \forall r_{\tau} :$$

$$\text{(F1)}$$

$$c_{\tau,t-1}(\overline{h}_{t-1}) = 1 \implies a_{\tau,t}(\overline{h}_{t-1}, r_{\tau}) = 0$$

We begin by showing that the space over which optimization is being conducted can be reduced. First, the following lemma argues that it is without loss of generality to restrict attention to allocation rules which only allot to patient buyers at the last period T. This lemma was originally shown in [8], which is a generalization of our model. We omit the proof.

Lemma 2.1. (Allot at Exit) It is without loss of generality to only consider allocation rules where patient buyers are only considered for allotment in the final period (impatient buyers must, by definition, be considered for allotment only in their arrival period).

Proof. Any other feasible allocation rule can be converted to an allot-at-exit rule by simply ‘moving’ the allocation for buyers who report patient to the last period. The seller is indifferent between these rules—while patient buyers are indifferent between receiving the good earlier or later. \(\square\)

This lemma simplifies the problem since it implies that the only non-zero variables are $a_{i,\tau}(h_{\tau})$ for any h_{τ}, and t such that $x(r_t(h_{\tau})) = p_t$; and $a_{i,\tau}(h_t)$ for any t, h_t such that $x(r_t(h_t)) = i$. Further, it implies that (F2) constraints are satisfied ‘for free’.

Finally, the incentive compatibility (IC) conditions, i.e. that a buyer is incentivized to report his true type. We break these into two parts--IC for impatient buyers and IC for patient buyers. This is useful because impatient buyers cannot profitably report themselves as patient. If an impatient buyer reports himself patient, by Lemma 2.1, she will receive the good (if at all), in the final period. By assumption, impatient buyers do not value units received after their deadline. Therefore misreporting as patient is clearly disincentivized ‘for free’.

$$\forall \overline{h}_{t-1}, \forall r_t, r_{\tau} \in T_t, v = v(r_t) :$$

$$\text{(IC1)}$$

$$\forall h_t, \forall \overline{h}_{t-1}, \forall r_t, r_{\tau} \in T_t, v = v(r_t) :$$

$$\text{(IC2)}$$

We can now write down the problem the seller must solve:

$$\text{(Exp Rev)}$$

$$\max_{a_{\tau}} \sum_{\tau} \mathbb{E}_{h_t} P_t(h_t)$$

$$\text{s.t.}$$

$$\text{(IR), (Cap), (F1), (IC1), (IC2)}.$$
objective function is first maximized by focusing only on local downward IC constraints, that is, the only constraints that are imposed is that the agent should not want to report her type as one lower. It is then shown that the solution to this relaxed problem also satisfies global IC. We too will employ this approach. However, agents in our problem have a second dimension of private information– their patience. This results in a large number of IC constraints. In the next section, we will show that due to the structure of our dynamic problem, ‘most’ of the new constraints can be relaxed. The only IC constraints corresponding to patience that need to be considered are those of a patient buyer of the highest possible value (P) reporting himself as impatient.

3 The Relaxed Approach and Main Result

In this section, we present our main result. As mentioned above, the optimal mechanism is hard to solve for as there are a large number of constraints. We thus approach the problem in three steps. We first argue that the space over which optimization is being done can be reduced by eliminating the prices and only focusing on allocation probabilities. This technique is standard in mechanism design. Second, we then define a relaxed problem with only a subset of the constraints in the original. This is the main challenge as classical static mechanism design does not inform on which constraints are important in dynamic problems with multidimensional private information. We then derive the solution to the relaxed problem. Since our actual problem contains more constraints than the relaxed problem, if the solution to the latter is feasible in the original problem then it must be the solution we are seeking. We now provide a sketch of this argument, details are in the appendix.

3.1 Solving the Seller’s Problem

Buyers in our model can simultaneously misreport both values and patience. Our IC constraints, (IC1) and (IC2) can equivalently be written as two constraints. The first considers misreports of value by a buyer (while correctly reporting patience), while the second considers patient buyers misreporting as impatient (while correctly reporting their value). If these two constraints are satisfied, incentive compatibility with respect to ‘double-misreports,’ i.e. a buyer misreporting his value and his patience is verified by chaining together the relevant value and patience IC constraints.

\[
\forall h_{t-1}, r_{t}, r'_{t} \in T_{t}^{r}, x \in \{i, p\} : \\
(P) \quad P_{t}(h_{t}) = v A(h_{t}) - \sum_{v=1}^{v-1} A(h_{t-1}, (v, t, x)) \\
\text{where } h_{t} = (h_{t-1}, (v, t, x)).
\]

Lemma 2.1 implies that the interim allocations are simply \(A_{t}(h_{t-1}, (v, t, i)) = a_{i,t}(h_{t-1}, (v, t, i)) \) and \(A(h_{t-1}, (v, t, p)) = E_{h_{t}}[a_{i,t}(h_{T})|(h_{t-1}, (v, t, p))] \), and allows us to eliminate a whole set of i’a’s. Lemma 3.1 then allows us to eliminate all the P’s from the objective function and the constraints. In particular, note that when P is given by (P), (IR) is satisfied. Further, (IC-V) is replaced by (V-Mono), while (IC-P) can be rewritten as:

\[
\forall t, h_{t-1}, v : \\
(\text{IC-P'}) \quad \sum_{v=1}^{v-1} A_{t}(h_{t-1}, (v, t, p)) \geq \sum_{v=1}^{v-1} A_{t}(h_{t-1}, (v, t, i))
\]

Finally, substituting P into the objective function, and changing the order of summation, we have the analog
of the celebrated virtual value formula:
\[
\sum_t \mathbb{E}_{\tilde{r}_t} P_t(h_t)
\]
\[
= \sum_t \mathbb{E}_{\tilde{r}_t} \mathbb{E}_{r_t} P_t(\tilde{r}_t, r_t)
\]
\[
= \sum_t \mathbb{E}_{\tilde{r}_t} \mathbb{E}_{r_t} \left[v(r_t) A_t(\tilde{r}_t, r_t) \right.
\]
\[
\left. - \sum_{v=1}^{v(r_t)-1} A_t(\tilde{r}_t, (v, t, x(r_t))) \right].
\]
(Exp Rev2) \[
= \sum_t \mathbb{E}_{\tilde{r}_t} \mathbb{E}_{r_t} \left[q_t(r_t) A_t(\tilde{r}_t, r_t) \right].
\]

Here,
\[
q_t(r_t) = \begin{cases}
\frac{v - 1 - \eta_{\tilde{r}_t}(v)}{\eta_{\tilde{r}_t}(v)} & \text{if } r_t = (v, t, i), \\
\frac{v - 1 - \eta_{\tilde{r}_t}(v)}{\eta_{\tilde{r}_t}(v)} & \text{if } r_t = (v, t, p).
\end{cases}
\]

Therefore the seller’s problem can be rewritten as:
\[
\max_a \sum_t \mathbb{E}_{\tilde{r}_t} \mathbb{E}_{r_t} \left[q_t(r_t) A_t(\tilde{r}_t, r_t) \right],
\]
s.t. \((V - Mono), (IC - P'), (Cap), (F1), (F2).\)

The ‘problematic’ constraints are \((IC - P')\). Without further guidance, we do not know which of these constraints bind in the optimal solution. Note that there are ‘many’ of these constraints—this constraint needs to be satisfied for each history \(\tilde{r}_{t-1}\), and each type \((v, t, p)\) misreporting as \((v, t, i)\). To further understand the structure of the optimal mechanism, the following lemma helps reduce the number of IC constraints that need be considered.

Lemma 3.2. Suppose for some time \(t\) and history \(\tilde{r}_{t-1}\), there exists some \(v^*\) such that
\[
(0-1A) \quad A_t(\tilde{r}_{t-1}, (v, t, i)) = \begin{cases}
0 & \text{if } v < v^*, \\
1 & \text{if } v > v^*.
\end{cases}
\]

Then \((IC - P')\) is satisfied at \(\tilde{r}_{t-1}\) for \(v\) if and only if satisfied for all \(v \leq \overline{v}\). Therefore it is sufficient to consider the seller’s problem with \((IC - P')\) for value \(\overline{v}\) at each history \(\tilde{r}_{t-1}\), and relax all constraints \((IC - P')\) for value \(v < \overline{v}\).

Proof. The if direction is trivial; we only need to show the only if direction. To see this, suppose that for some \(v' < \overline{v}\), \((IC - P')\) is violated or:
\[
\sum_{v=1}^{v'-1} A_t(\tilde{r}_{t-1}, (v, t, p)) < \sum_{v=1}^{v'-1} A_t(\tilde{r}_{t-1}, (v, t, i)),
\]
However from the former inequality, \(A_t(\tilde{r}_{t-1}, (v' - 1, t, i)) > 0\). By the assumption of the lemma, therefore, \(A_t(\tilde{r}_{t-1}, (v, t, i)) = 1\) for all \(v \geq v'\). By definition, \(A_t(\tilde{r}_{t-1}, (v, t, p)) \leq 1\). Therefore:
\[
\sum_{v=1}^{\overline{v} - 1} A_t(\tilde{r}_{t-1}, (v, t, p)) \leq \sum_{v=1}^{\overline{v} - 1} A_t(\tilde{r}_{t-1}, (v, t, i)).
\]

Intuitively the assumption of Lemma 3.2 is satisfied if impatient buyers face posted prices—this case all values below the posted price get an allocation probability of 0, while all values above the posted price get the good with probability 1. In this case, the Lemma shows that the only patience misreport we need be concerned with is the highest possible value patient buyer misreporting as impatient. Roughly speaking, the reason is that all \(A'\)’s are probabilities—therefore they must lie between 0 and 1. If for some other value \(v' < \overline{v}\), \((IC - P')\) is violated, it will also be violated for \(\overline{v}\) since \(A(\tilde{r}_{t-1}, (v, t, i)) = 1 \geq A(\tilde{r}_{t-1}, (v, t, p))\) for any \(v > v'\).

This simple insight allows us to greatly reduce the number of constraints considered—we only need to \((IC - P')\) constraints corresponding to each history \(\tilde{r}_{t-1}\) and the highest possible value \(\overline{v}\).

Our final step simply involves taking a relaxation of each of these constraints to the objective function. We will only give a heuristic sketch here, the formal proof is left in the appendix (i.e. verifying that a relaxation approach works for this setting etc.). Since there will be one constraint for each history \(\tilde{r}_{t-1}\), let us denote the corresponding dual variable by \(\eta(\tilde{r}_{t-1})\).

Collecting terms, the problem can be written as:
\[
(R-OPT) \quad \max_a \sum_t \mathbb{E}_{\tilde{r}_t} \mathbb{E}_{r_t} \left[q_t^M(r_t, \tilde{r}_{t-1}) A_t(\tilde{r}_{t-1}, r_t) \right],
\]
s.t. \((V - Mono), (Cap), (F1), (F2).\)

Here,
\[
q_t^M(r_t, \tilde{r}_{t-1}) = \begin{cases}
\frac{\eta(\tilde{r}_{t-1})}{\eta_{\tilde{r}_t}(v)} & \text{if } x(r_t) = i, \\
\frac{\eta(\tilde{r}_{t-1})}{\eta_{\tilde{r}_t}(v)} & \text{if } x(r_t) = p.
\end{cases}
\]

Note that in the absence of \((V - Mono)\), the solution to problem \((R-OPT)\) can be computed by a dynamic stochastic knapsack algorithm where the ‘weight’ of a buyer reporting \(r_t\) at history \(\tilde{r}_{t-1}\) is given by \(q_t^M(r_t, \tilde{r}_{t-1})\). In the appendix, we show that the maintained regularity assumption on the distribution, Definition 2.1, implies that the output of the dynamic stochastic knapsack algorithm satisfies both \((0-1A)\) and \((V-Mono)\).
To roughly see why, note that at any stage before the final period, the algorithm trades off the current weight \(v - \frac{1 - F(v)}{f_i(v)} - \frac{\eta(h_{t-1})}{f_i(v)} \) with the expected incremental value from one extra unit in the future. Condition (3) of Definition 2.1 implies that \(v - \frac{1 - F(v)}{f_i(v)} - \frac{\eta(h_{t-1})}{f_i(v)} \) is increasing in \(v \), implying (V-Mono) and (0-1A) for impatient buyers. In the final period, the algorithm will assign the remaining goods to the highest non-negative \(\phi^M \)'s among patient buyers. It follows that conditions (1) and (2) of Definition 2.1 imply (V-Mono) for patient buyers.

3.2 Main Result We can summarize the argument above into our main result, which characterizes the form of the optimal mechanism. Importantly, the optimal mechanism can be “implemented” in a simple and transparent way. This implies that the mechanism is straightforward enough to allow unsophisticated buyers to purchase optimally. This is critical for utilizing a mechanism in practice as it has been shown that even reasonably sophisticated bidders do not understand the rules of complex mechanisms (such as the Vickrey auction).

Proposition 3.1. The seller’s optimal mechanism in our environment can be described as follows:

1. In each period, the arriving buyer is offered the option of buying the good at a posted price or entering in an auction that will clear in the final period.
2. Impatient buyers choose the posted price (a take it or leave it offer), and buy a unit if their value exceeds the price.
3. Patient buyers report their value for the final period auction.

The auction need not be a ‘standard’ auction, i.e. the highest bidder need not win the good. Buyers who bid in different periods may be treated differently, even if their distributions are the same (i.e. \(f_i^p = f_i^{M} \)).

The prices offered in each period, and the allocation rule of the auction are calculated by a dynamic stochastic knapsack algorithm which assigns to a buyer who reports \(r_t \) given history \(h_{t-1} \) a ‘reward’ of \(\phi^M_i(r_t, h_{t-1}) \) as defined in (M-VV).

4 Discussion & Concluding Remarks

As we mentioned earlier, prior to this work, the main approaches to ironing in a dynamic setting were computational. These approaches identified that the ‘problematic’ constraints were (IC-P'). However, in the absence of a counterpart to Lemma 3.2, this approach instead imposes the stronger constraint: \(A_i(h_{t-1}, (v, t, p)) \geq A_i(h_{t-1}, (v, t, i)) \) for each \(v \), or the analogous constraint on ex-post rather than interim allocation rules. This (stronger) constraint is easier to work with. When considering allotting the good to buyer \((v, t, i)\) at time \(t \) after history \(h_{t-1} \), the seller ‘looks ahead’ in his dynamic program to whether he would have allotted the good to the buyer, had the buyer instead been of type \((v, t, p)\) (an exact look-ahead is often too taxing computationally, so Monte Carlo simulations are used). If not, the algorithm allot to neither and therefore ensures that the stronger monotonicity constraint is satisfied.

By contrast, our mechanism is provably optimal if the correct \(\eta \)'s are known. Indeed once the \(\eta \)'s are known, a dynamic stochastic knapsack with \(\phi^M \) as the weights will output the optimal mechanism. Efficient algorithms to find \(\eta(\cdot) \) are beyond the scope of this paper. In simple settings, such as the case of 2 time periods, there is a single \(\eta \) which can be found by binary search up to a desired tolerance (note that \(0 \leq \eta \leq 1 \)). However, for even the case of 3 time periods, naïve approaches are computationally forbidding. Given the importance and relevance of the problem at hand, we hope that this will spur further work characterizing how to efficiently find (or approximate) the optimal \(\eta \)'s, and leave it as an open question.

The recent work of Cai, Daskalakis and Weinberg [3] could potentially be used towards this. Their paper uses insights about the structure of the feasible allocation space to explicitly construct tractable algorithms for mechanism design even when types are multi-dimensional. However, their setting is static. Feasible allocations in a dynamic mechanism must additionally satisfy filtration constraints, i.e. the allocation at any period can only depend on reports up to that period, and not on types that arrive in the future. If their model can be extended to accomodate these filtration constraints, we could explicitly solve for the optimal mechanism.

Extensions The main assumption in this paper is on buyers’ patience– each buyer is either completely impatient or completely patient. Generalizing this to allow a buyer in period \(t \) to have any deadline \(t \leq \bar{t} \leq T \) is non-trivial. If the buyer has a deadline of \(\bar{t} > t, \bar{t} < T \), then from his perspective in period \(t \), he faces a random price (in period \(\bar{t} \). This is because the price will depend on the other arrivals between \(t \) and \(\bar{t} \). We therefore lose the \(0 - 1 \) structure provided by Lemma 3.2, which allows us to relax most of the (IC-P') constraints. This in turn makes characterization of the optimal mechanism difficult. We leave this as an open
question.

On a similar note, another ‘unsatisfying’ assumption is that buyers see all past activity in the mechanism, or at least that all of the impatient buyers see past impatient buyers’ bids before making their own bid. At a conceptual level, the setting where buyers do not see past activity is one where fewer constraints on the sellers’ problem, because Incentive compatibility for an arriving buyer need not be satisfied history-by-history, and only need be satisfied in expectation over all possible histories. However, in this setting also, we will lose our ‘structural’ lemma, Lemma 3.2. Therefore again, while the optimal auction may have higher revenue, we are unable to characterize its structure.

References

A Proof of Proposition 3.1

We prove our main proposition in this appendix. Using the results in the text, we focus on the following problem:

$$\max_d \sum_t E_{\tau_t} E_r \left[\varphi(t)(r_t) A_t(\tau_{t-1}, r_t) \right],$$

s.t. (IC-P) at T, (Cap) at T, (F1).

We will show that value monotonicity will be satisfied and we will explicitly account for (F2) and (Cap) at other t’s. We will require two pieces of notation. Given an allocation rule, we will let $\pi(\cdot)$ be the induced probability over histories. Part of this is exogenously given by the arrival process and type distribution, we will denote this π_{τ_t} while part of this depends on the allocation rule since histories contain information about past allocation decisions.

Step 1: Taking KKT Conditions For simplicity, we define

$$R(\tau_t) = \sum_{\tau > t} E_{h_{\tau_t}} \left[\varphi_{\tau_t}(r_{\tau_t}(h_{\tau_t})) A_{\tau_t}(h_{\tau_t}) \right].$$

We define Lagrangean multipliers for the various constraints:

1. (IC-P’) at T: $\eta(\tau_{t-1})$.
2. (Cap) at T: $\gamma(h_T)$.
3. (F1) for $a_{t,\tau}(h_t)$: $\lambda_{\tau_t}(h_t)$, $\psi_{\tau_t}(h_t)$

Note that all multipliers other than λ are non-negative; λ’s are non-positive. We first take partial derivatives of the objective function with respect to the variables A_t. Below is the derivative of the objective function with respect to $a_{t,\tau}(h_t)$ where $r_t(h_t) \in T_t$ and $t < T$.

$$\frac{\partial \text{OBJ}}{\partial a_{t,\tau}(h_t)} = \pi(h_t) \left[\varphi(r_t) - \Delta_f(h_t) - \Delta_f(h_t) \right],$$
where

\[\Delta_p(h_t) = \sum_{\tau < t \mid r_t(h_t) \in T^p_t} \varphi(r_t(h_t)) \Delta (h_t), \]

\[\Delta_t(h_t) = \mathbb{E}_{h_T}[a_{r_t,h_T}(h_t, c_{r_t} = 1)] - \mathbb{E}_{h_T}[a_{r_t,h_T}(h_t, c_{r_t} = 0)] \]

\[\Delta_f(h_t) = R(h_t, c_{r_t} = 0) - R(h_t, c_{r_t} = 1). \]

In words, if one increases the probability by which a impatient report \(r_t \) gets the good at a history \(h_t \), one increases (or decreases) virtual revenue by the probability \(\pi(h_t) \) of that profile having occurred times the virtual value of the report \(r_t \), less the difference in expected future virtual revenue from past patient buyers still waiting to be allotted (\(\Delta_p(h_t) \)) and buyers arriving in the future (\(\Delta_f(h_t) \)).

Next is the derivative of the objective function with respect to \(a_{r_t,h_T}(h_T) \) where \(r_t(h_T) \in T^p_t \) and \(t \leq T \).

\[\frac{\partial \text{OBJ}}{\partial a_{r_t,h_T}(h_T)} = \pi(h_T) \varphi(r_t(h_T)). \]

Assuming we can show constraint qualification, we just need to put together a solution that satisfies the appropriate KKT conditions. These are given by:

\[(K:a_{r_t,l}(h_t)) \quad \varforall h_t, \text{ such that } r_t \in T^l_t : \]

\[\frac{\partial \text{OBJ}}{\partial a_{r_t,l}(h_t)} = \sum_{\tau < t \mid r_t(h_t) \in T^p_t} \eta(h_{t-1}) \pi(h_t | h_{t}) \Delta_t(h_t) + \eta(h_{t-1}) + \lambda_t(h_t) + \psi_t(h_t), \]

\[(K:a_{r_t,T}(h_T)) \quad \varforall h_T, t, r_t \in \mathbb{P} : \]

\[\frac{\partial \text{OBJ}}{\partial a_{r_t,T}(h_T)} = -\eta(h_{t-1}) \pi(h_T | h_{t}) + \gamma(h_T) + \lambda_t(h_T) + \psi_t(h_T), \]

coupled with the appropriate complementary slackness conditions, i.e. that either an inequality binds or the corresponding lagrangian is 0. For simplicity, let us define

\[\Delta_a(h_t, \tau) = \frac{1}{\pi(h_T)} \Delta_t(h_t). \]

Substituting, the first KKT condition can be written as:

\[\pi(h_{t-1}) \pi(h_T) (\varphi(r_t) - \Delta_t(h_t) - \Delta_p(h_t)) + \eta(h_{t-1}) + \lambda_t(h_t) + \psi_t(h_t). \]

Rearranging, we get:

\[\pi(h_{t-1}) \pi(h_T) (\varphi(r_t) - \Delta_f(h_t) - \Delta_p(h_t)) + \eta(h_{t-1}) + \lambda_t(h_t) + \psi_t(h_t). \]

Similarly, substituting in \(\frac{\partial \text{OBJ}}{\partial a_{r_t,T}(h_T)} \), the second KKT condition can be written as:

\[\pi(h_T) \varphi(r_t) + \eta(h_{t-1}) \pi(h_T | h_t) + \gamma(h_T) = \lambda_t(h_T) + \psi_t(h_T). \]

Rearranging, we have:

\[\pi(h_T) \varphi(r_t) + \eta(h_{t-1}) \pi(h_T | h_t) + \gamma(h_T) = \lambda_t(h_T) + \psi_t(h_T). \]

Therefore we are left to find a solution to these KKT conditions. As a little orientation for the reader, we will proceed in the following steps. (1) ‘Guess’ the \(\eta \)'s, and solve for the rest of the variables. (2) Show what ‘consistent’ \(\eta \) must be. (3) Verify that the solution constructed satisfies the inequalities we relaxed, i.e. all the (IC-Value) constraints and (IC-Patience) for \(v < \mathcal{V} \).

Step 2: Constructing the rest of the solution given \(\eta \)'s

Allocations for the patient buyers First, for each \(h_T \), with available capacity \(c_{r_T} \), we show how to construct the \(a_{r_T}(h_T) \)’s. For all patient buyers present in history \(h_T \) let \(t_1, t_2, \ldots t_{r+1} \) be the arrival times for the patient buyers with the largest ‘adjusted virtual values’: \(\varphi(r_t) + \eta(h_{t-1}) \frac{\pi(h_T)}{\pi(h_t)} \).

Two cases:

1. **Case 1**: \(\varphi(r_t) + \eta(h_{t-1}) \frac{\pi(h_T)}{\pi(h_t)} \geq 0 \) for \(c_T + 1 \). In this case, set

\[a_{r,T}(h_T) = \begin{cases} 1 & \text{for } t = t_j, j \leq c_T, \\ 0 & \text{o.w.} \end{cases} \]

\[\gamma(h_T) = \pi(h_T) (\varphi(r_t) + \eta(h_{t-1}) \frac{\pi(h_T)}{\pi(h_t)}, t = t_{c_T+1}. \]

It should be clear that we can now select \(\psi_t(h_T) > 0 \) for \(t = t_{c_T} \), and \(\gamma_t(h_T) \leq 0 \) for all other \(t' \) such that the KKT condition corresponding to this history is satisfied.
2. **Case 2:** Either \(\leq c_T \) patient buyers present in history, or \(\leq c_T \) patient buyers with non-negative ‘adjusted virtual value’ \(\varphi(r_t) + \frac{\eta(h_{t-1})}{\pi(h_t)} \). Let the number of present patient buyers with non-negative ‘adjusted virtual value’ be \(c_p \leq c_T \).

\[
a_{i,T}(h_T) = \begin{cases}
1 & \text{for } t = \tau_j, j \leq c_p \ , \\
0 & \text{o.w.}
\end{cases}
\]

\(\gamma(h_T) = 0 \).

It should be clear that we can now select \(\psi(h_T, r_t) > 0 \) for \(t = \tau_{\leq c_p} \), and \(\gamma(h_T, r_t) \leq 0 \) for all other \(t' \) such that the KKT condition corresponding to this history is satisfied.

Allocations for the Impatient Buyers: Recall that the relevant KKT condition for an impatient buyer in period \(t \) is:

\[
\pi(h_{t-1}) \pi_b(r_t) \left(\varphi(r_t) - \Delta_f(h_t) - \Delta_p(h_t) \right) - \sum_{\tau < t-1, \tau \in \mathcal{P}} \eta(h_{t-1}) \Delta_a(h_t, \tau) - \eta(h_{t-1}) \lambda_1(h_t) + \psi_1(h_t).
\]

Now, we can construct allocation for the impatient buyers by backward induction, starting from period \(T - 1 \). For any history \(h_{T-1} \) such that \(r_{T-1} \in \mathcal{I} \), we know that \(\Delta_f(h_{T-1}) = 0 \). Since we have constructed all the \(a_T \)’s above, \(\Delta_p(h_{T-1}) \) and \(\Delta_a \) can both be calculated.

So, the left-hand side of the KKT constraint is

\[
LHS(h_{T-1}) = \pi(h_{T-1}) \pi_b(r_{T-1}) \left(\varphi(r_{T-1}) - \Delta_p(h_{T-1}) \right) - \sum_{\tau < t-1, \tau \in \mathcal{P}} \eta(h_{t-1}) \Delta_a(h_{t-1}, \tau) - \eta(h_{t-1}) \lambda_1(h_t)
\]

By observation:

1. \(LHS > 0 \iff a_{T-1,T-1}(h_{T-1}) = 1, \psi_{T-1}(h_{T-1}) = 0 \),
2. \(LHS < 0 \iff a_{T-1,T-1}(h_{T-1}) = 0, \lambda_{T-1}(h_{T-1}) = 0 \),
3. \(LHS = 0 \iff \psi_{T-1}(h_{T-1}) = \lambda_{T-1}(h_{T-1}) = 0 \).

Having determined all the \(a_{T-1} \)’s, we can now determine all \(a_i \)’s analogously, working by backward induction.

Step 3: Verifying feasibility in the original program

This can be broken into 3 parts, corresponding to the three classes of constraints we relaxed: (IC-V) for patient buyers, (IC-V) for impatient buyers, and (IC-P) for \(v < \tau \).

Verifying (IC-V) for Impatient Buyers

Pick any history \(h_{T-1} \) and two types \((v, t, i) \) and \((v+1, t, i) \). If we can show that:

\[
a_{\ell,i}(h_{T-1}, (v, t, i)) \leq a_{\ell,i}(h_{T-1}, (v+1, t, i)),
\]

we are done.

To demonstrate this, it is sufficient to show that:

\[
\pi(h_{T-1}) \pi_b(r_t) \left(\varphi(r_t) - \Delta_f(h_t) - \Delta_p(h_t) \right) - \sum_{\tau < t-1, \tau \in \mathcal{P}} \eta(h_{T-1}) \Delta_a(h_t, \tau) - \eta(h_{T-1})
\]

is increasing in \(v \).

By construction, \(\Delta_f(h_t) \), \(\Delta_p(h_t) \) and \(\Delta_a(h_t, \tau) \) are independent of \(r_t \in \mathcal{I} \), i.e. they only depend on \(h_{T-1} \). We will denote

\[
\delta(h_{T-1}) = \Delta_f(h_t) - \Delta_p(h_t) - \sum_{\tau < t-1, \tau \in \mathcal{P}} \eta(h_{T-1}) \Delta_a(h_t, \tau).
\]

Therefore, left to show that:

\[
\left[\pi(h_{T-1}) \pi_b(r_t) \left(\varphi(r_t) - c(h_{T-1}) \right) - \eta(h_{T-1}) \right] \uparrow \text{ in } v.
\]

\[
\iff \left[\pi_b(r_t) \left(\varphi(r_t) - c(h_{T-1}) \right) \right] \uparrow \text{ in } v.
\]

Consider two cases:

1. \(\pi_b(v+1, t, i) \geq \pi_b(v, t, i) \), i.e. \(f_2^i(v+1) \geq f_2^i(v) \): In this case, note that

\[
\varphi((v+1, t, i)) > \varphi(v, t, i)
\]

\[
\iff \varphi((v+1, t, i)) - c(h_{T-1}) > \varphi(v, t, i) - c(h_{T-1})
\]

\[
\iff \pi_b(v+1, t, i)(\varphi(v+1, t, i)) - c(h_{T-1}) > \pi_b(v, t, i)(\varphi(v, t, i)) - c(h_{T-1})
\]

2. \(\pi_b(v+1, t, i) < \pi_b(v, t, i) \), i.e. \(f_2^i(v+1) < f_2^i(v) \): Clearly, \(\pi_b(v+1, t, i)\pi(h_{T-1}) > \pi_b(v+1, t, i)\eta(h_{T-1}) \). Further, \(\pi_b(v, t, i)\varphi(v, t, i) \) is increasing in \(v \) by our maintained regularity condition (3) of Definition 2.1.

Verifying (IC-V) for Patient Buyers

On any history \(h_T \), suppose \(r_t = (v, t, p) \) is among the \(c_T \) highest adjusted virtual values. Now consider history \(h'_{T-1} \), where the only difference between the two histories is that the buyer arriving in time \(t \) is \(r'_{t} = (v+1, t, p) \). The adjusted virtual value of \(r'_{t} \) is

\[
\varphi((v+1, t, p)) + \frac{\eta(h_{T-1})}{\pi(h_t)}
\]

\[
= \varphi((v+1, t, p)) + \frac{\eta(h_{T-1})}{\pi(h_{T-1})\pi_b(v+1, t, p)}
\]

\[
\geq \varphi((v, t, p)) + \frac{\eta(h_{T-1})}{\pi(h_{T-1})\pi_b(v, t, p)}.
\]
where the last inequality follows by the increasing virtual value and decreasing density assumptions we have maintained on patient buyers. Therefore, on any history \(h_T \) where a buyer with type \((v, t, p)\) gets allotted, buyer \((v + 1, t, p)\) would also get allotted.

Verifying (IC-P) for \(v < \sigma \) Note that by construction of \(a_{t,i} \)'s, they satisfy the \(0 - 1 \) property identified in (0-1A)– if a buyer \((v, t, i)\) is allotted the good, so is buyer \((v + 1, t, i)\). Therefore these constraints are satisfied by Lemma 3.2 proved in the body of the text.

Step 4: Constraint Qualification We will show constraint qualification by the Mangasarian-Fromovitz constraint qualification, i.e. that the gradients of the active inequalities are positive-linearly independent. Recall that the variables in the seller’s problem are:

\[
\forall h_{t-1}, r_i \in \mathbb{T}_t^i : a_{t,i}(h_t); \forall h_T, r_r \in \mathbb{T}_T^p : a_{t,T}(h_T).
\]

Further, there are 4 classes of inequalities:

1. \(\forall h_{t-1}^i \) : (IC-P) (which can be rewritten as (IC-P')).
2. \(\forall h_T \) : (Cap).
3. \(\forall h_{t-1}, r_i \in \mathbb{T}_t^i \) : (F1), i.e. \(0 \leq a_{t,i}(h_t) \leq 1 \).
4. \(\forall h_T, r_r \in \mathbb{T}_T^p \) : (F1), i.e. \(0 \leq a_{t,T}(h_T) \leq 1 \).

Note that among the latter 2 inequalities, only one of the upperbound and lower bound can be active. Further, each inequality corresponds to a different variable. So this set is linearly independent and therefore positive-linearly independent.

Next, note that adding in the capacity constraints does not destroy positive linear independence because the derivative with respect to the \(a_T \) variables is positive (and if a capacity constraint is active, then at least one of the lower bounds for the \(a_T \) variables present in it cannot be active).

Finally we need to verify that adding the gradients of the active IC patience constraints does not destroy positive linear independence. To see this, suppose not, i.e. suppose there exists some subset of the active constraints such that their gradients are positive-linearly dependent. At least one of this subset must be an (IC-P') constraint. Pick the (IC-P') constraint in the subset corresponding to \(h_{t-1} \) be such that there are no (IC-P') constraints corresponding to an earlier period (i.e. less than \(t \)) in this subset with \(\sum_{t=1}^{t-1} a_{t,i}(h_{t-1}, (v, t, i)) > 0 \). In this case, note that at least some of these variables must be strictly positive. Therefore the lower bound for those variables cannot be active. The derivative of this inequality w.r.t. \(a_{t,i}(h_{t-1}, (v, t, i)) \) is 1. However, with the lower bound inactive there are no active inequalities with a negative derivative w.r.t \(a_{t,i}(h_{t-1}, (v, t, i)) \).

If there is no such inequality, i.e. every (IC-Patience) constraint is either inactive or has

\[
\sum_{t=1}^{\sigma-1} a_{t,i}(h_{t-1}, (v, t, i)) = 0
\]

then no constraint qualification is required, our proposed solution is optimal as a special case of Pai-Vohra [8].

Step 5: Implementation Given that our construction of the optimal allocation rule for impatient buyers has the \(0 - 1 \) property, any buyer reporting \((v, t, i)\) at some history \(h_{t-1} \) who gets the good must pay the same price– this follows from simply calculating the pricing rule by (P). This can be interpreted as the posted price offered to impatient buyers.

The ‘asymmetric’ auction follows from the definition of the allocation rule in the final period, which gives the good to the buyers with the highest ‘modified’ virtual values as described in Step 2. Finally for appropriately selected \(\eta \)'s, our mechanism will satisfy (IC-P) and therefore patient buyers will enter in the auction and not purchase at the posted price.