Learning mixtures of structured distributions over discrete domains

Siu-On Chan*
UC Berkeley
siuon@cs.berkeley.edu.

Ilias Diakonikolas‡
University of Edinburgh
ilias.d@ed.ac.uk.

Rocco A. Servedio‡
Columbia University
rocco@cs.columbia.edu.

Xiaorui Sun§
Columbia University
xiaoruisun@cs.columbia.edu.

Abstract

Let \mathcal{C} be a class of probability distributions over the discrete domain $[n] = \{1, \ldots, n\}$. We show that if \mathcal{C} satisfies a rather general condition – essentially, that each distribution in \mathcal{C} can be well-approximated by a variable-width histogram with few bins – then there is a highly efficient (both in terms of running time and sample complexity) algorithm that can learn any mixture of k unknown distributions from \mathcal{C}.

We analyze several natural types of distributions over $[n]$, including log-concave, monotone hazard rate and unimodal distributions, and show that they have the required structural property of being well-approximated by a histogram with few bins. Applying our general algorithm, we obtain near-optimally efficient algorithms for all these mixture learning problems as described below. More precisely,

- **Log-concave distributions:** We learn any mixture of k log-concave distributions over $[n]$ using $k \cdot \tilde{O}(1/\varepsilon^3)$ samples (independent of n) and running in time $\tilde{O}(k \log(n)/\varepsilon^4)$ bit-operations (note that reading a single sample from $[n]$ takes $\Theta(\log n)$ bit operations). For the special case $k = 1$ we give an efficient algorithm using $\tilde{O}(1/\varepsilon^3)$ samples; this generalizes the main result of [DDS12b] from the class of Poisson Binomial distributions to the much broader class of all log-concave distributions. Our upper bounds are not far from optimal since any algorithm for this learning problem requires $\Omega(k/\varepsilon^{5/2})$ samples.

- **Monotone hazard rate (MHR) distributions:** We learn any mixture of k MHR distributions over $[n]$ using $O(k \log(n/\varepsilon)/\varepsilon^4)$ samples and running in time $O(k \log^2(n)/\varepsilon^4)$ bit-operations. Any algorithm for this learning problem must use $\Omega(k \log(n)/\varepsilon^3)$ samples.

- **Unimodal distributions:** We give an algorithm that learns any mixture of k unimodal distributions over $[n]$ using $O(k \log(n)/\varepsilon^4)$ samples and running in time $O(k \log^2(n)/\varepsilon^4)$ bit-operations. Any algorithm for this problem must use $\Omega(k \log(n)/\varepsilon^3)$ samples.

1 Introduction

1.1 Background and motivation. Learning an unknown probability distribution given access to independent samples is a classical topic with a long history in statistics and probability theory. Theoretical computer science researchers have also been interested in these problems at least since the 1990s [KMR+94, Das99], with an explicit focus on the computational efficiency of algorithms for learning distributions. Many works in theoretical computer science over the past decade have focused on learning and testing various kinds of probability distributions over high-dimensional spaces, see e.g. [Das99, FM99, DS00, AK01, VW02, FOS05, RS05, BS10, KMV10, MV10, ACS10] and references therein. There has also been significant recent interest in learning and testing various types of probability distributions over the discrete domain $[n] = \{1, \ldots, n\}$, see e.g. [BKR04, VV11b, VV11a, DDS12a, DDS12b].

A natural type of distribution learning problem, which is the focus of this work, is that of learning an unknown mixture of “simple” distributions. Mixtures of distributions have received much attention in statistics [Lin95, RW84, TSM85] and in re-
cent years have been intensively studied in computer science as well (see many of the papers referenced above). Given distributions \(p_1, \ldots, p_k \) and non-negative values \(\mu_1, \ldots, \mu_k \) that sum to 1, we say that \(p = \sum_{i=1}^k \mu_i p_i \) is a \(k \)-mixture of components \(p_1, \ldots, p_k \) with mixing weights \(\mu_1, \ldots, \mu_k \). A draw from \(p \) is obtained by choosing \(i \in [k] \) with probability \(\mu_i \) and then making a draw from \(p_i \).

In this paper we work in essentially the classical “density estimation” framework [Sil86, Sco92, DL01] which is very similar to the model considered in [KMR+94] in a theoretical computer science context. In this framework the learning algorithm is given access to independent samples drawn from an unknown target distribution over \([n]\), and it must output a hypothesis distribution \(h \) over \([n]\) such that with high probability the total variation distance \(d_{TV}(p, h) \) between \(p \) and \(h \) is at most \(\epsilon \). Thus, for learning mixture distributions, our goal is simply to construct a high-accuracy hypothesis distribution which is very close to the mixture distribution that generated the data. In keeping with the spirit of [KMR+94], we shall be centrally concerned with the running time as well as the number of samples required by our algorithms that learn mixtures of various types of discrete distributions over \([n]\).

We focus on density estimation rather than, say, clustering or parameter estimation, for several reasons. First, clustering samples according to which component in the mixture each sample came from is often an impossible task unless restrictive separation assumptions are made on the components; we prefer not to make such assumptions. Second, the classes of distributions that we are chiefly interested in (such as log-concave, MHR and unimodal distributions) are all non-parametric classes, so it is unclear what “parameter estimation” would even mean for these classes. Finally, even in highly restricted special cases, parameter estimation provably requires sample complexity exponential in \(k \), the number of components in the mixture. Moitra and Valiant [MV10] have shown that parameter estimation for a mixture of \(k \) Gaussians inherently requires \(\exp(\Omega(k)) \) samples. Their argument can be translated to the discrete setting, with translated Binomial distributions in place of Gaussians, to provide a similar lower bound for parameter estimation of translated Binomial mixtures. Thus, parameter estimation even for a mixture of \(k \) translated Binomial distributions over \([n]\) (a highly restricted special case of all the mixture classes we consider, since translated Binomial distributions are log-concave, MHR and unimodal) requires \(\exp(\Omega(k)) \) samples. This rather discouraging lower bound motivates the study of other variants of the problem of learning mixture distributions.

Returning to our density estimation framework, it is not hard to show that from an information-theoretic perspective, learning a mixture of distributions from a class \(\mathcal{C} \) of distributions is never much harder than learning a single distribution from \(\mathcal{C} \). In Appendix A we give a simple argument which establishes the following:

Proposition 1.1. [Sample Complexity of Learning Mixtures] Let \(\mathcal{C} \) be a class of distributions over \([n]\). Let \(A \) be an algorithm which learns any unknown distribution \(p \) in \(\mathcal{C} \) using \(m(n, \epsilon) \cdot \log(1/\delta) \) samples, i.e., with probability \(1 - \delta \) \(A \) outputs a hypothesis distribution \(h \) such that \(d_{TV}(p, h) \leq \epsilon \), where \(p \in \mathcal{C} \) is the unknown target distribution. Then there is an algorithm \(A' \) which uses \(\tilde{O}(k/\epsilon^2) \cdot m(n, \epsilon/20) \cdot \log^2(1/\delta) \) samples and learns any unknown \(k \)-mixture of distributions in \(\mathcal{C} \) to variation distance \(\epsilon \) with confidence probability \(1 - \delta \).

While the generic algorithm \(A' \) uses relatively few samples, it is computationally highly inefficient, with running time exponentially higher than the runtime of algorithm \(A \) (since \(A' \) tries all possible partitions of its input sample into \(k \) separate subsamples). Indeed, naive approaches to learning mixture distributions run into a “credit assignment” problem of determining which component distribution each sample point belongs to.

As the main contributions of this paper, we (i) give a general algorithm which efficiently learns mixture distributions over \([n]\) provided that the component distributions satisfy a mild condition; and (ii) show that this algorithm can be used to obtain highly efficient algorithms for natural mixture learning problems.

1.2 A general algorithm.

The mild condition which we require of the component distributions in our mixtures is essentially that each component distribution must be close to a (variable-width) histogram with few bins. More precisely, let us say that a distribution \(q \) over \([n]\) is \((\epsilon, t)\)-flat (see Section 2) if there is a partition of \([n]\) into \(t \) disjoint intervals \(I_1, \ldots, I_t \) such that \(p \) is \(\epsilon \)-close (in total variation distance) to the distribution obtained by “flattening” \(p \) within each interval \(I_j \) (i.e., by replacing \(p(k) \), for \(k \in I_j \), with \(\sum_{i \in I_j} p(i)/|I_j| \)). Our general result for learning mixture distributions is a highly efficient algorithm that learns any \(k \)-mixture of \((\epsilon, t)\)-flat distributions:
Theorem 1.1. (Informal Statement) There is an algorithm that learns any \(k \)-mixture of \((\varepsilon,t) \)-flat distributions over \([n]\) to accuracy \(O(\varepsilon) \), using \(O(kt/\varepsilon^3) \) samples and running in \(O(kt \log(n)/\varepsilon^3) \) bit-operations.

As we show in Section 1.3 below, Theorem 1.1 yields near-optimal sample complexity for a range of interesting mixture learning problems, with a running time that is nearly linear in the sample size. Another attractive feature of Theorem 1.1 is that it always outputs hypothesis distributions with a very simple structure (enabling a succinct representation), namely histograms with at most \(kt/\varepsilon \) bins.

1.3 Applications of the general approach. We apply our general approach to obtain a wide range of learning results for mixtures of various natural and well-studied types of discrete distributions. These include mixtures of log-concave distributions, mixtures of monotone hazard rate (MHR) distributions, and mixtures of unimodal distributions. To do this, in each case we need a structural result stating that any distribution of the relevant type can be well-approximated by a histogram with few bins. In some cases (unimodal distributions) the necessary structural results were previously known, but in others (log-concave and MHR distributions) we establish novel structural results that, combined with our general approach, yield nearly optimal algorithms.

Log-concave distributions. Discrete log-concave distributions are essentially those distributions \(p \) that satisfy \(p(k)^2 \geq p(k + 1)p(k - 1) \) (see Section 4 for a precise definition). They are closely analogous to log-concave distributions over continuous domains, and encompass a range of interesting and well-studied types of discrete distributions, including binomial, negative binomial, geometric, hypergeometric, Poisson, Poisson Binomial, hyper-Poisson, Pólya-Eggenberger, and Skellam distributions (see Section 1 of [FBR11]). In the continuous setting, log-concave distributions include uniform, normal, exponential, logistic, extreme value, Laplace, Weibull, Gamma, Chi and Chi-Squared and Beta distributions, see [BB05]. Log-concave distributions over \([n]\) have been studied in a range of different contexts including economics, statistics and probability theory, and algebra, combinatorics and geometry, see [An95, FBR11, Sta89] and references therein.

Our main learning result for mixtures of discrete log-concave distributions is:

Theorem 1.2. There is an algorithm that learns any \(k \)-mixture of log-concave distributions over \([n]\) to variation distance \(\varepsilon \) using \(k \cdot \tilde{O}(1/\varepsilon^4) \) samples and running in \(\tilde{O}(k \log(n)/\varepsilon^3) \) bit-operations.

We stress that the sample complexity above is completely independent of the domain size \(n \). In the special case of learning a single discrete log-concave distribution we achieve an improved sample complexity of \(O(1/\varepsilon^3) \) samples, with running time \(O(\log(n)/\varepsilon^3) \). This matches the sample complexity and running time of the main result of [DDS12b], which was a specialized algorithm for learning Poisson Binomial distributions over \([n]\). Our new algorithm is simpler, applies to the broader class of all log-concave distributions, has a much simpler and more self-contained analysis, and generalizes to mixtures of \(k \) distributions (at the cost of an additional \(1/\varepsilon \) factor in runtime and sample complexity). We note that these algorithmic results are not far from the best possible for mixtures of log-concave distributions. We show in Section 4 that for \(k \leq n^{1-\Omega(1)} \) and \(\varepsilon \geq 1/n^{\Omega(1)} \), any algorithm for learning a mixture of \(k \) log-concave distributions to accuracy \(\varepsilon \) must use \(\Omega(k/\varepsilon^{2-\delta}) \) samples.

Monotone Hazard Rate (MHR) distributions. A discrete distribution \(p \) over \([n]\) is said to have a monotone (increasing) hazard rate if the hazard rate

\[H(i) \overset{\text{def}}{=} \sum_{j \geq i} p(j) \]

is a non-decreasing function of \(i \). It is well known that every discrete log-concave distribution is MHR (see e.g. part (ii) of Proposition 10 of [An95]), but MHR is a more general condition than log-concavity (for example, it is easy to check that every non-decreasing distribution over \([n]\) is MHR, but such distributions need not be log-concave). The MHR property is a standard assumption in economics, in particular auction theory and mechanism design [Mye81, FT91, MCWG95]. Such distributions also arise frequently in reliability theory; [BMP63] is a good reference for basic properties of these distributions.

Our main learning result for mixtures of MHR distributions is:

Theorem 1.3. There is an algorithm that learns any \(k \)-mixture of MHR distributions over \([n]\) to variation distance \(\varepsilon \) using \(O(k \log(n)/\varepsilon^4) \) samples and running in \(\tilde{O}(k \log^2(n)/\varepsilon^4) \) bit-operations.

This theorem is also nearly optimal. We show that for \(k \leq n^{1-\Omega(1)} \) and \(\varepsilon \geq 1/n^{\Omega(1)} \), any algorithm for learning a mixture of \(k \) MHR distributions to accuracy \(\varepsilon \) must use \(\Omega(k \log(n)/\varepsilon^3) \) samples.

Unimodal distributions. A distribution over \([n]\) is
said to be unimodal if its probability mass function is monotone non-decreasing over \([1, t]\) for some \(t \leq n\) and then monotone non-increasing on \([t, n]\). Every log-concave distribution is unimodal, but the MHR and unimodal conditions are easily seen to be incomparable. Many natural types of distributions are unimodal and there has been extensive work on density estimation for unimodal distributions and related questions [Rao69, Weg70, BKR04, Bir97, Fou97].

Our main learning result for mixtures of unimodal distributions is:

Theorem 1.4. There is an algorithm that learns any \(k\)-mixture of unimodal distributions over \([n]\) to variation distance \(\varepsilon\) using \(O(k \log(n)/\varepsilon^4)\) samples and running in \(\tilde{O}(k \log^2(n)/\varepsilon^4)\) bit-operations.

Our approach in fact extends to learning a \(k\)-mixture of \(t\)-modal distributions (see Section 6). The same lower bound argument that we use for mixtures of MHR distributions also gives us that for \(k \leq n^{1-\Omega(1)}\) and \(\varepsilon \geq 1/n^{\Omega(1)}\), any algorithm for learning a mixture of \(k\) unimodal distributions to accuracy \(\varepsilon\) must use \(\Omega(k \log(n)/\varepsilon^3)\) samples.

1.4 Related work. Log-concave distributions:

Maximum likelihood estimators for both continuous [DR09, Wal09] and discrete [FBR11] log-concave distributions have been recently studied by various authors. For special cases of log-concave densities over \(\mathbb{R}\) (that satisfy various restrictions on the shape of the pdf) upper bounds on the minimax risk of estimators are known, see e.g. Exercise 15.21 of [DL01]. (We remark that these results do not imply the \(k = 1\) case of our log-concave mixture learning result.) Perhaps the most relevant prior work is the recent algorithm of [DDS12b] which gives a \(\tilde{O}(1/\varepsilon^3)\)-sample, \(\tilde{O}(\log(n)/\varepsilon^3)\)-time algorithm for learning any Poisson Binomial Distribution over \([n]\). (As noted above, we match the performance of the [DDS12b] algorithm for the broader class of all log-concave distributions, as the \(k = 1\) case of our log-concave mixture learning result.)

Achlioptas and McSherry [AM05] and Kannan et al. [KSV08] gave algorithms for clustering points drawn from a mixture of \(k\) high-dimensional log-concave distributions, under various separation assumptions on the distance between the means of the components. We are not aware of prior work on density estimation of mixtures of arbitrary log-concave distributions in either the continuous or the discrete setting.

MHR distributions: As noted above, MHR distributions appear frequently and play an important role in reliability theory and in economics (to the extent that the MHR condition is considered a standard assumption in these settings). Surprisingly, the problem of learning an unknown MHR distribution or mixture of such distributions has not been explicitly considered in the statistics literature. We note that several authors have considered the problem of estimating the hazard rate of an MHR distribution in different contexts, see e.g. [Wan86, HW93, GJ11, Ban08].

Unimodal distributions: The problem of learning a single unimodal distribution is well-understood: Birgé [Bir97] gave an efficient algorithm for learning continuous unimodal distributions (whose density is absolutely bounded); his algorithm, when translated to the discrete domain \([n]\), requires \(O(\log(n)/\varepsilon^3)\) samples. This sample size is also known to be optimal (up to constant factors)[Bir87a]. In recent work, Daskalakis et al. [DDS12a] gave an efficient algorithm to learn \(t\)-modal distributions over \([n]\). We remark that their result does not imply ours, as even a mixture of two unimodal distributions over \([n]\) may have \(\Omega(n)\) modes. We are not aware of prior work on efficiently learning mixtures of unimodal distributions.

Paper Structure. Following some preliminaries in Section 2, Section 3 presents our general framework for learning mixtures. Sections 4, 5 and 6 analyze the cases of log-concave, MHR and unimodal mixtures respectively.
Given a family of subsets A of \mathbb{R}, we define
$$d_K(p, q) \overset{\text{def}}{=} \max_{j \in [n]} \left| \sum_{i=1}^{j} p(i) - \sum_{i=1}^{j} q(i) \right|.$$ Note that $d_K(p, q) \leq d_{TV}(p, q)$.

Finally, the following notation and terminology will be useful: given m independent samples s_1, \ldots, s_m, drawn from distribution $p : [n] \to [0, 1]$, the empirical distribution $\hat{p}_m : [n] \to [0, 1]$ is defined as follows: for all $i \in [n]$, $\hat{p}_m(i) = |\{ j \in [m] \mid s_j = i \}| / m$.

Partitions, flat decompositions and refinements

Given a partition $I = \{I_1, \ldots, I_t\}$ of $[n]$ into t disjoint intervals and a distribution p over $[n]$, we write $p^{\flat}(I)$ to denote the flattened distribution. This is the distribution over $[n]$ defined as follows: for $j \in [t]$ and $i \in I_j$, $p^{\flat}(I)(i) = p(I_j)/|I_j|$. That is, $p^{\flat}(I)$ is obtained from p by averaging the weight p assigns to each interval in I over the entire interval.

Definition 2.1. (Flat decomposition) Let p be a distribution over $[n]$ and \mathcal{P} be a partition of $[n]$ into t disjoint intervals. We say that \mathcal{P} is a (p, ε, t)-flat decomposition of $[n]$ if $d_{TV}(p, p^{\flat}(\mathcal{P})) \leq \varepsilon$. If there exists a (p, ε, t)-flat decomposition of $[n]$ then we say that p is (ε, t)-flat.

Let $I = \{I_1, \ldots, I_s\}$ be a partition of $[n]$ into s disjoint intervals, and $J = \{J_1, \ldots, J_t\}$ be a partition of $[n]$ into t disjoint intervals. We say that J is a refinement of I if each interval in I is a union of intervals in J, i.e., for every $a \in [s]$ there is a subset $S_a \subseteq [t]$ such that $I_a = \cup_{b \in S_a} J_b$.

For $I = \{I'_1\}_{i=1}^{r}$ and $I' = \{I'_1\}_{i=1}^{s}$ two partitions of $[n]$ into r and s intervals respectively, we say that the common refinement of I and I' is the partition J of $[n]$ into intervals obtained from I and I' in the obvious way, by taking all possible nonempty intervals of the form $I_i \cap I'_j$. It is clear that J is both a refinement of I and of I' and that J contains at most $r + s$ intervals.

2.1 Basic Tools

We recall some basic tools from probability.

The VC inequality. Given a family of subsets A over $[n]$, define $\|p\|_A = \sup_{A \in A} p(A)$. The VC-dimension of A is the maximum size of a subset $X \subseteq [n]$ that is shattered by A, i.e., for every $Y \subseteq X$ some $A \in A$ satisfies $A \cap X = Y$.

Theorem 2.1. (VC inequality, [DL01, p.31])

Let \hat{p}_m be an empirical distribution of m samples from p. Let A be a family of subsets of VC-dimension d. Then
$$\mathbb{E} \left[\|p - \hat{p}_m\|_A \right] \leq O\left(\sqrt{d/m} \right).$$

Uniform convergence. We will also use the following uniform convergence bound:

Theorem 2.2. ([DL01, p.17])

Let A be a family of subsets over $[n]$, and \hat{p}_m be an empirical distribution of m samples from p. Let X be the random variable $\|p - \hat{p}\|_A$. Then we have
$$\Pr \left[X > \mathbb{E}[X] + \eta \right] \leq e^{-2m\eta^2}.$$

3 Learning mixtures of (ε, t)-flat distributions

In this section we present and analyze our general algorithm for learning mixtures of (ε, t)-flat distributions. We proceed in stages by considering three increasingly demanding learning scenarios, each of which builds on the previous one.

3.1 First scenario: known flat decomposition

We start with the simplest scenario, in which the learning algorithm is given a partition \mathcal{P} which is a (ε, t)-flat decomposition of $[n]$ for the target distribution p being learned.

Algorithm LEARN-KNOWN-DECOMPOSITION $(p, \mathcal{P}, \varepsilon, \delta)$

Input: sample access to unknown distribution p over $[n]$; (ε, t)-flat decomposition \mathcal{P} of $[n]$; accuracy parameter ε; confidence parameter δ

1. Draw $m = O\left((t + \log 1/\delta)/\varepsilon^2 \right)$ samples to obtain an empirical distribution \hat{p}_m.
2. Return $(\hat{p}_m)^{\flat}(\mathcal{P})$.

Theorem 3.1. Let p be any unknown target distribution over $[n]$ and \mathcal{P} be any (ε, t)-flat decomposition of $[n]$. Algorithm LEARN-KNOWN-DECOMPOSITION$(p, \mathcal{P}, \varepsilon, \delta)$ draws $O(\log(1/\delta)/\varepsilon^2)$ samples from p and with probability at least $1 - \delta$, outputs $(\hat{p}_m)^{\flat}(\mathcal{P})$ such that $d_{TV}(\hat{p}_m^{\flat}(\mathcal{P}), p) \leq 2\varepsilon$. Its running time is $O((t + \log(1/\delta)) \cdot \log(n)/\varepsilon^2)$ bit operations.

Proof. An application of the triangle inequality yields $d_{TV}(p, (\hat{p}_m)^{\flat}(\mathcal{P})) \leq d_{TV}(p, p^{\flat}(\mathcal{P})) + \varepsilon$.
\(d_{TV}(p_{\text{flat}}(P), (\hat{p}_m)_{\text{flat}}(P))\). The first term on the right-hand side is at most \(\epsilon\) by the definition of a \((p, \varepsilon, t)\)-flat decomposition. The second term is also at most \(\epsilon\), as follows by Proposition 3.1, stated and proved below.

\[\epsilon.\]

Proposition 3.1. Let \(p\) be any distribution over \([n]\) and let \(\hat{p}_m\) be an empirical distribution of \(m = \Theta((s + \log 1/\delta)/\varepsilon^2)\) samples from \(p\). Let \(P\) be any partition of \([n]\) into at most \(s\) intervals. Then with probability at least \(1 - \delta\), \(d_{TV}(p_{\text{flat}}(P), (\hat{p}_m)_{\text{flat}}(P))\) \(\leq \epsilon\).

Proof. By definition we have that
\[
d_{TV}(p_{\text{flat}}(P), (\hat{p}_m)_{\text{flat}}(P)) = |p(A) - \hat{p}_m(A)|,
\]
where \(A = \bigcup\{I \in P \mid p(I) > \hat{p}_m(I)\}\). Since \(P\) contains at most \(s\) intervals, \(A\) is a union of at most \(s\) intervals. Consequently the above right-hand side is at most \(|p - \hat{p}_m|_{\infty}\), where \(A_s\) is the family of all unions of at most \(s\) intervals over \([n]\). Since the VC-dimension of \(A_s\) is \(2s\), Theorem 2.1 implies that the considered quantity has expected value at most \(\epsilon\). The claimed result now follows by applying Theorem 2.2 with \(\eta = \epsilon\).

3.2 Second scenario: unknown flat distribution. The second algorithm deals with the scenario in which the target distribution \(p\) is \((\varepsilon/4, t)\)-flat but no flat decomposition is provided to the learner.

We show that in such a setting we can construct a \((p, \varepsilon, O(t/\varepsilon))\)-flat decomposition \(P\) of \([n]\), and then we can simply use this \(P\) to run **Learn-Known-Decomposition**.

The basic subroutine **Right-Interval** will be useful here (and later). It takes as input an explicit description of a distribution \(q\) over \([n]\), an interval \(J = [a, b] \subseteq [n]\), and a threshold \(\tau > 0\). It returns the longest interval in \([a, b]\) that ends at \(b\) and has mass at most \(\tau\) under \(q\). If no such interval exists then \(q(b)\) must exceeds \(\tau\), and the subroutine simply returns the singleton interval \([b, b]\).

```
Subroutine Right-Interval(q, J, \tau):
Input: explicit description of distribution q; interval J = [a, b]; threshold \tau
```

\[
1. \text{If } q(b) > \tau \text{ then set } i' = b, \text{ otherwise set } i' = \min\{a \leq i \leq b \mid q([i, b]) \leq \tau\}.
2. \text{Return } [i', b].
\]

The algorithm to construct a decomposition is given below:

```
Algorithm Construct-Decomposition(p, \tau, \varepsilon, \delta):
Input: sample access to unknown distribution p over \([n]\); parameter \tau; accuracy parameter \varepsilon; confidence parameter \delta
1. Draw m = O((1/\tau + \log 1/\delta)/\varepsilon^2) samples to obtain an empirical distribution \(\hat{p}_m\).
2. Set J = [n], P = \emptyset.
3. While J \neq \emptyset:
   (a) Let I be the interval returned by Right-Interval(\(\hat{p}_m\), J, \tau).
   (b) Add I to P and set J = J \setminus I.
4. Return P.
```

Theorem 3.2. Let \(\mathcal{C}\) be a class of \((\varepsilon/4, t)\)-flat distributions over \([n]\). Then for any \(p \in \mathcal{C}\), Algorithm **Construct-Decomposition**\((p, \varepsilon/(4t), \varepsilon, \delta)\) draws \(O(t/\varepsilon^3) + \log(1/\delta)/\varepsilon^4)\) samples from \(p\), and with probability at least \(1 - \delta\) outputs a \((p, \varepsilon, 8t/\varepsilon)\)-flat decomposition \(P\) of \([n]\). Its running time is \(O((1/\tau + \log(1/\delta)) \cdot \log(n)/\varepsilon^2)\) bit operations.

To prove the above theorem we will need the following elementary fact about refinements:

Lemma 3.1. ([DDS\(^+\)13, Lemma 4]) Let \(p\) be any distribution over \([n]\) and let \(I = \{I_i\}_{i=1}^t\) be a \((p, \varepsilon, t)\)-flat decomposition of \([n]\). If \(J = \{J_i\}_{i=1}^t\) is a refinement of \(I\), then \(J\) is a \((p, 2\varepsilon, t')\)-flat decomposition of \([n]\).

We will also use the following simple observation about the **Right-Interval** subroutine:

Observation 3.1. Suppose that the subroutine **Right-Interval**\((q, J, \tau)\) returns an interval \(I \neq J\) and that **Right-Interval**\((q, J \setminus I, \tau)\) returns \(I'\). Then \(q(I) + q(I') > \tau\).
Proof. [Theorem 3.2] Let $\tau \triangleq \varepsilon/(4t)$. By Observation 3.1, the partition \mathcal{P} that the algorithm constructs must contain at most $2/\tau$ intervals. Let \mathcal{Q} be the common refinement of \mathcal{P} and a $(p, \varepsilon/4, t)$-flat decomposition of $[n]$ (the existence of such a decomposition is guaranteed because every distribution in \mathcal{E} is $(\varepsilon/4, t)$-flat). Now note that $d_{TV}(p, p_{\text{flat}}(\mathcal{P})) \leq d_{TV}(p, p_{\text{flat}}(\mathcal{Q})) + d_{TV}(p_{\text{flat}}(\mathcal{Q}), p_{\text{flat}}(\mathcal{P}))$.

Since \mathcal{Q} is a refinement of the $(p, \varepsilon/4, t)$-flat decomposition of $[n]$, Lemma 3.1 implies that the first term on the RHS is at most $\varepsilon/2$. It remains to bound $\Delta \triangleq d_{TV}(p_{\text{flat}}(\mathcal{Q}), p_{\text{flat}}(\mathcal{P}))$. Fix any interval $I \in \mathcal{P}$ and let us consider the contribution

$$
(1/2) \sum_{j \in I} |p_{\text{flat}}(\mathcal{Q})(j) - p_{\text{flat}}(\mathcal{P})(j)|
$$

of I to Δ. If $I \in \mathcal{P} \cap \mathcal{Q}$ then the contribution to Δ is zero; on the other hand, if $I \in \mathcal{P} \setminus \mathcal{Q}$ then the contribution to Δ is at most $p(I)/2$. Thus the total contribution summed across all $I \in \mathcal{P}$ is at most $(1/2) \sum_{I \in \mathcal{P} \setminus \mathcal{Q}} p(I)$. Now we observe that with probability at least $1 - \delta$ we have

$$
(3.1) \sum_{I \in \mathcal{P} \setminus \mathcal{Q}} p(I)/2 \leq \varepsilon/4 + \sum_{I \in \mathcal{P} \setminus \mathcal{Q}} \hat{p}_m(I)/2,
$$

where the inequality follows from the fact that $d_{TV}(p_{\text{flat}}(\mathcal{P}), (\hat{p}_m)_{\text{flat}}(\mathcal{P})) \leq \varepsilon/4$ by Proposition 3.1. If $I \in \mathcal{P} \setminus \mathcal{Q}$ then I cannot be a singleton, and hence $\hat{p}_m(I) \leq \tau$ by definition of RIGHT-INTERVAL. Finally, it is easy to see that at most t intervals I in \mathcal{P} do not belong to \mathcal{Q} (because \mathcal{Q} is the common refinement of \mathcal{P} and a partition of $[n]$ into at most t intervals). Thus the second term on RHS of (3.1) is at most $t \tau = \varepsilon/4$. Hence $\Delta \leq \varepsilon/2$ and the theorem is proved.

Our algorithm to learn an unknown $(\varepsilon/4, t)$-flat distribution is now very simple:

The following is now immediate:

Theorem 3.3. Let \mathcal{E} be a class of $(\varepsilon/4, t)$-flat distributions over $[n]$. Then for any $p \in \mathcal{E}$, Algorithm LEARN-UNKNOWN-DECOMPOSITION(p, ε, δ) draws $O(t/\varepsilon^3 + \log(1/\delta)/\varepsilon^2)$ samples from p, and with probability at least $1 - \delta$ outputs a hypothesis h satisfying $d_{TV}(p, h) \leq \varepsilon$. Its running time is $O(\log(n) \cdot (t/\varepsilon^3 + \log(1/\delta)/\varepsilon^2))$ bit operations.

3.3 Main result (third scenario): learning a mixture of flat distributions. We have arrived at the scenario of real interest to us, namely learning an unknown mixture of k distributions each of which has an (unknown) flat decomposition. The key to learning such distributions is the following structural result, which says that any such mixture must itself have a flat decomposition:

Lemma 3.2. Let \mathcal{E} be a class of (ε, t)-flat distributions over $[n]$, and let p be any k-mixture of distributions in \mathcal{E}. Then p is a $(2\varepsilon, kt)$-flat distribution.

Proof. Let $p = \sum_{j=1}^{k} \mu_j p_j$ be a k-mixture of components $p_1, \ldots, p_k \in \mathcal{E}$. Let \mathcal{P}_j denote the (p_j, ε, t)-flat decomposition of $[n]$ corresponding to p_j, and let \mathcal{P} be the common refinement of $\mathcal{P}_1, \mathcal{P}_2, \ldots, \mathcal{P}_k$. It is clear that \mathcal{P} contains at most kt intervals. By Lemma 3.1, \mathcal{P} is a $(p_j, 2\varepsilon, kt)$-flat decomposition for every p_j. Hence, we have

$$
d_{TV}(p, p_{\text{flat}}(\mathcal{P})) = d_{TV} \left(\sum_{j=1}^{k} \mu_j p_j, \sum_{j=1}^{k} \mu_j (p_j)_{\text{flat}}(\mathcal{P}) \right)
$$

$$
\leq \sum_{j=1}^{k} \mu_j d_{TV} \left(p_j, (p_j)_{\text{flat}}(\mathcal{P}) \right)
$$

$$
\leq 2\varepsilon
$$

1386 Copyright © SIAM. Unauthorized reproduction of this article is prohibited.
where (3.2) is the triangle inequality and (3.3) follows from the fact that the expression in (3.2) is a nonnegative convex combination of terms bounded from above by 2ε.

Given Lemma 3.2, the desired mixture learning algorithm follows immediately from the results of the previous subsection:

Corollary 3.1. (see Theorem 1.1) Let \mathcal{C} be a class of $(\varepsilon/8,t)$-flat distributions over $[n]$, and let p be any k-mixture of distributions in \mathcal{C}. Then Algorithm **LEARN-UNKNOWN-DECOMPOSITION** $(p,kt,\varepsilon,\delta)$ draws $O(kt/\varepsilon^3 + \log(1/\delta)/\varepsilon^2)$ samples from p, and with probability at least $1 - \delta$ outputs a hypothesis distribution h satisfying $d_{TV}(p,h) \leq \varepsilon$. Its running time is $\tilde{O}(k^4 \log(n) \cdot (kt/\varepsilon^3 + \log(1/\delta)/\varepsilon^2))$ bit operations.

4 Learning mixtures of log-concave distributions

In this section we apply our general method from Section 3 to learn log-concave distributions over $[n]$ and mixtures of such distributions. We start with a formal definition:

Definition 4.1. A probability distribution p over $[n]$ is said to be log-concave if it satisfies the following conditions: (i) if $1 \leq i < j < k \leq n$ are such that $p(i)p(k) > 0$ then $p(j) > 0$; and (ii) $p(k)^2 \geq p(k-1)p(k+1)$ for all $k \in [n]$.

We note that while some of the literature on log-concave distributions states that the definition consists solely of item (ii) above, item (i) is in fact necessary as well since without it log-concave distributions need not even be unimodal (see the discussion following Definition 2.3 of [FBR11]).

In Section 4.1 we give an efficient algorithm which constructs an $(\varepsilon, O(\log(1/\varepsilon)/\delta))$-flat decomposition of any target log-concave distribution. Combining this with Algorithm **LEARN-KNOWN-DECOMPOSITION** we obtain an $\tilde{O}(1/\varepsilon^3)$-sample algorithm for learning a single discrete log-concave distribution, and combining it with Corollary 3.1 we obtain a $k \cdot \tilde{O}(1/\varepsilon^4)$-sample algorithm for learning a k-mixture of log-concave distributions.

4.1 Constructing a flat decomposition given samples from a log-concave distribution

We recall the well-known fact that log-concavity implies unimodality (see e.g. [KG71]). Thus, it is useful to analyze log-concave distributions which additionally are monotone (since a general log-concave distribution can be viewed as consisting of two such pieces).

With this motivation we give the following lemma:

Lemma 4.1. Let p be a distribution over $[n]$ that is non-decreasing and log-concave on $[1,b] \subseteq [n]$. Let $I = [a,b]$ be an interval of mass $p(I) = \tau$, and suppose that the interval $J = [1,a-1]$ has mass $p(J) = \sigma > 0$. Then

$$p(b)/p(a) \leq 1 + \tau/\sigma.$$

Proof. Let $s \equiv |I| = b-a+1$ be the length of I. We decompose J into intervals J_1, \ldots, J_t of length s, starting from the right. More precisely,

$$J_j \equiv I - js = [a - js, b - js]$$

for $1 \leq j \leq t \equiv [(a-1)/s]$. The leftmost interval J_t may contain non-positive integers; for this reason define $p(i) \equiv 0$ for non-positive i (note that the new distribution is still log-concave). Also define $J_0 \equiv I = [a,b]$. Let $\lambda \equiv p(b)/p(a)$. We claim that

$$p(i-s) \leq (1/\lambda) \cdot p(i) \quad \text{for } 1 \leq i \leq b.$$

(4.4) holds for $i = b$, since $p(b-s) \leq p(a)$ by the non-decreasing property. The general case $i \leq b$ follows by induction and using the fact that the ratio $p(i-1)/p(i)$ is non-decreasing in i for any log-concave distribution (an immediate consequence of the definition of log-concavity).

It is easy to see that (4.4) implies

$$p(J_{j+1}) \leq (1/\lambda) \cdot p(J_j)$$

for $0 \leq j \leq t$. Since the intervals have geometrically decreasing mass, this implies that

$$\sigma = \sum_{1 \leq j \leq t} p(J_j) \leq p(I) \sum_{j \geq 1} \lambda^{-j} = \frac{\tau}{\lambda - 1}.$$

Rearranging yields the desired inequality.

We will also use the following elementary fact:

Fact 4.1. Let p be a distribution over $[n]$ and $I \subseteq [n]$ be an interval such that $\max_{j \in I} p(j)/p(I) \leq 1 + \eta$ (i.e., p is η-multiplicatively close to uniform over the interval I). Then the flattened sub-distribution $p^{flat(I)}(i) \equiv p(I)/|I|$ satisfies $d_{TV}(p', p^{flat(I)}) \leq \eta \cdot p(I)$.
We are now ready to present and analyze our algorithm DECOMPOSE-LOG-CONCAVE that draws samples from an unknown log-concave distribution and outputs a flat decomposition. The algorithm simply runs the general algorithm CONSTRUCT-DECOMPOSITION with an appropriate choice of parameters. However, the analysis will not go via the “generic” Theorem 3.2 (which would yield a weaker bound) but instead uses Lemma 4.1, which is specific to log-concave distributions.

Algorithm DECOMPOSE-LOG-CONCAVE(p, ε, δ):

Input: sample access to unknown log-concave distribution p over [n]; accuracy parameter ε; confidence parameter δ

1. Set τ = Θ(ε/ log(1/δ)).
2. Run CONSTRUCT-DECOMPOSITION(p, τ, ε, δ) and return the decomposition P that it yields.

Our main theorem in this section is the following:

Theorem 4.1. For any log-concave distribution p over n, Algorithm DECOMPOSE-LOG-CONCAVE(p, ε, δ) draws $O(\log(1/ \delta) \epsilon^3 + \log(1/ \delta)(\log(1/ \epsilon))^2/ \epsilon^2)$ samples from p and with probability at least 1 − δ constructs a decomposition P that is (p, ε, O(\log(1/ \epsilon)))-flat.

Proof. We first note that the number of intervals in P is at most 2/τ by Observation 3.1; this will be useful below. We may also assume that $d_H(p, \hat{p}_m) \leq \tau$, where \hat{p}_m is the empirical distribution obtained in Step 1 of CONSTRUCT-DECOMPOSITION; this inequality holds with probability at least 1 − δ, as follows by a combined application of Theorems 2.1 and 2.2. Since p is log-concave, it is unimodal. Let i_0 be a mode of p.

Let $\mathcal{P}_L = \{I \in P : I \subset [1, i_0 - 1]\}$ be the collection of intervals to the left of i_0. We now bound the contribution of intervals in \mathcal{P}_L to $\Delta = d_{TV}(p, p^{flat}(P))$. Let I_1, \ldots, I_{k_L} be the intervals in \mathcal{P}_L listed from left to right. Let $J_j = \bigcup_{i < j} J_i$ be the union of intervals to the left of I_j. If I_j is a singleton, its contribution to Δ is zero. Otherwise,

$$p(I_j) \leq \hat{p}_m(I_j) + \tau \leq 2\tau$$

by the τ-closeness of p and \hat{p}_m in Kolmogorov distance and the definition of RIGHT-INTERVAL. Also, by Observation 3.1,

$$\hat{p}_m(J_j) \geq ((j - 1)/2) \tau \geq ((j - 1)/2 - 1) \tau,$$

and hence

$$p(J_j) \geq \hat{p}_m(J_j) - \tau \geq \tau(j - 5)/2,$$

again by closeness in Kolmogorov distance.

Since p is non-decreasing on [1, $i_0 - 1$], we have

$$\|p_{\hat{I}_j} - p^{flat}(\hat{I}_j)\|_1 \leq \frac{8}{j - 5} \tau$$

for $j > 5$, by Lemma 4.1 and Fact 4.1, using the upper and lower bounds on $p(I_j)$ and $p(J_j)$ respectively. Consequently, $\|p_{\hat{I}_j} - p^{flat}(\hat{I}_j)\|_1 \leq O(\tau/j)$ for all $j \in [t_L]$. Summing this inequality, we get

$$\sum_{j \leq t_L} \|p_{\hat{I}_j} - p^{flat}(\hat{I}_j)\|_1 \leq \sum_{j \leq t_L} O(\tau/j) = O(\tau \log(1/\tau)).$$

The right-hand side above is at most $\epsilon/2$ by our choice of τ (with an appropriate constant in the big-oh).

Similarly, let $\mathcal{P}_R = \{I \in P : I \subset [i_0 + 1, n]\}$ be the collection of intervals to the right of i_0. An identical analysis (using the obvious analogue of Lemma 4.1 for non-increasing log-concave distributions on $[i_0 + 1, n]$) shows that the contribution of intervals in \mathcal{P}_R to Δ is at most $\epsilon/2$.

Finally, let $I_0 \in P$ be the interval containing i_0. If I_0 is a singleton, it does not contribute to Δ. Otherwise, $\hat{p}_m(I_0) \leq \tau$ and $p(I_0) \leq 2\tau$, hence the contribution of I_0 to Δ is at most 2τ.

Combining all three cases,

$$\|p - p^{flat}(P)\|_1 \leq \epsilon/2 + \epsilon/2 + 2\tau \leq 2\epsilon.$$

Hence $d_{TV}(p, p^{flat}(P)) \leq \epsilon$ as was to be shown.

Our claimed upper bounds follow from the above theorem by using our framework of Section 3. Indeed, it is clear that we can learn any unknown log-concave distribution by running Algorithm DECOMPOSE-LOG-CONCAVE(p, ε, δ, 2) to obtain a decomposition P and then Algorithm LEARN-KNOWN-DECOMPOSITION(p, P, ε, δ, 2) to obtain a hypothesis distribution h:

Corollary 4.1. Given sample access to a log-concave distribution p over [n], there is an algorithm LEARN-LOG-CONCAVE(p, ε, δ) that uses $O((1/ \delta) \epsilon^3 \cdot (1/ \epsilon^2 + \log(1/ \delta)/ \epsilon^2))$ samples from p and with probability at least 1 − δ outputs a distribution h such that $d_{TV}(p, h) \leq \epsilon$. Its running time is $O(\log(n) \cdot \log(1/ \delta)/ \epsilon^2)$ bit operations.
Theorem 4.1 of course implies that every log-concave distribution p is $(\epsilon, O((1/\epsilon)^{5/2}))$-flat. We may thus apply Corollary 3.1 and obtain our main learning result for k-mixtures of log-concave distributions:

Corollary 4.2. (see Theorem 1.2) Let p be any k-mixture of log-concave distributions over $[n]$. There is an algorithm LEARN-LOG-CONCAVE-MIXTURE(p, k, ϵ, δ) that draws $O(k \log(1/\epsilon)/\epsilon^4 + \log(1/\delta)/\epsilon^2)$ samples from p and with probability at least $1 - \delta$ outputs a distribution h such that $d_{TV}(p, h) \leq \epsilon$. Its running time is $O((\log(n) \cdot (k \log(1/\epsilon)/\epsilon^4 + \log(1/\delta)/\epsilon^2))$ bit operations.

Lower bounds. It is shown in [DL01, Lemma 15.1] that learning a continuous distribution whose density is bounded and convex over $[0, 1]$ to accuracy ϵ requires $\Omega((1/\epsilon)^{5/2})$ samples. An easy adaptation of this argument implies the same result for a bounded concave density over $[0, 1]$. By an appropriate discretization procedure, one can show that learning a discrete concave density over $[n]$ requires $\Omega((1/\epsilon)^{5/2})$ samples for all $\epsilon \geq 1/n^{\Omega(1)}$. Since a discrete concave distribution is also log-concave, the same lower bound holds for this case too. For the case of k-mixtures, we may consider a uniform mixture of k component distributions where the i-th distribution in the mixture is supported on $[1 + (i - 1)n/k, in/k]$ and is log-concave on its support. It is clear that each component distribution is log-concave over $[n]$, and it is not difficult to see that in order to learn such a mixture to accuracy ϵ, at least $9/10$ of the component distributions must be learned to total variation distance at most 10ϵ. We thus get that for $k \leq n^{1-\Omega(1)}$ and $\epsilon \geq 1/n^{\Omega(1)}$, any algorithm for learning a mixture of k log-concave distributions to accuracy ϵ must use $\Omega(k \epsilon^{-5/2})$ samples.

5 Learning mixtures of MHR distributions

In this section we apply our general method from Section 3 to learn monotone hazard rate (MHR) distributions over $[n]$ and mixtures of such distributions.

Definition 5.1. Let p be a distribution supported in $[n]$. The hazard rate of p is the function $H(i) \triangleq \sum_{j \geq i} p(j)/p(i)$ if $\sum_{j \geq i} p(j) = 0$ then we say $H(i) = +\infty$. We say that p has monotone hazard rate (MHR) if $H(i)$ is a non-decreasing function over $[n]$.

It is known that every log-concave distribution over $[n]$ is MHR but the converse is not true, as can easily be seen from the fact that every monotone non-decreasing distribution over $[n]$ is MHR.

In Section 5.1 we prove that every MHR distribution over $[n]$ has $(\epsilon, O((1/\epsilon)^{5/2}))$-flat decomposition. We combine this with our general results from Section 3 to get learning results for mixtures of MHR distributions.

5.1 Learning a single MHR distribution. Our algorithm to construct a flat decomposition of an MHR distribution p is DECOMPOSE-MHR, given below. Note that this algorithm takes an explicit description of p as input and does not draw any samples from p. Roughly speaking, the algorithm works by partitioning $[n]$ into intervals such that within each interval the value of p never deviates from its value at the leftmost point of the interval by a multiplicative factor of more than $(1 + \epsilon/8)$.

Algorithm DECOMPOSE-MHR(p, ϵ):

Input: explicit description of MHR distribution p over $[n]$; accuracy parameter $\epsilon > 0$

1. Set $J = [n]$ and initialize Q to be the empty set.

2. Let I be the interval returned by RIGHT-INTERVAL($p, J, \epsilon/8$), and I' be the interval returned by RIGHT-INTERVAL($p, J \setminus I, \epsilon/8$). Set $J = J \setminus (I \cup I')$.

3. Set $i \in J$ to be the smallest integer such that $p(i) \geq \epsilon/(4n)$. If no such i exists, let $I'' = J$ and go to Step 5. Otherwise, let $I'' = [1, i - 1]$ and $J = J \setminus I''$.

4. While $J \neq \emptyset$:
 (a) Let $j \in J$ be the smallest integer such that either $p(j) > (1 + \epsilon/8)p(i)$ or $p(j) < (1 + \epsilon/8)p(i)$ holds. If no such j exists let $I''' = J$, otherwise, let $I''' = [i, j - 1]$.
 (b) Add I''' to Q, and set $J = J \setminus I'''$.
 (c) Let $i = j$.

5. Return $\mathcal{P} = Q \cup \{I, I', I''\}$.

Our first lemma for the analysis of DECOMPOSE-MHR states that MHR distributions satisfy a condition that is similar to being monotone non-decreasing:

Lemma 5.1. Let p be an MHR distribution over $[n]$.
Let $I = [a, b] \subset [n]$ be an interval, and $R = [b + 1, n]$ be the elements to the right of I. Let $\eta \overset{\text{def}}{=} p(I)/p(R)$. Then $p(b + 1) \geq \frac{1}{1 + \eta} p(a)$.

Proof. If $p(b + 1) > p(a)$ then $p(b + 1) \geq \frac{1}{1 + \eta} p(a)$ holds directly, so for the rest of the proof we may assume that $p(b + 1) \leq p(a)$.

By the definition of the MHR condition we have $\frac{p(a)}{p(a+1, n]} \leq \frac{p(b+1)}{p(b+2, n]}$ and hence

$$\frac{p(a, n]}{p(a)} \geq \frac{p([b+1, n]}}{p(b+1)}.$$

Thus we obtain

$$p(b + 1) \geq \frac{p(b+1, n]}{p(a, n]} \cdot p(a) = \frac{1 + \eta}{1 + \eta} p(a)$$

as desired.

Let $Q = \{I_1, I_2, \ldots, I_{|Q|}\}$, with $I_i = [a_i, b_i]$, $1 \leq i \leq |Q|$, where $a_i < a_{i+1}$. Let $Q' = \{I \in Q : p(a) > p(a_{i+1})\}$ and $Q'' = \{I \in Q : p(a) \leq p(a_{i+1})\}$.

Then, Q' consists of those intervals I in Q which are such that the following interval’s initial value is significantly smaller than the initial value of I, and Q'' consists of those $I \in Q$ for which the following interval’s initial value is significantly larger than the initial value of I. We also denote $R_i = [a_i, n]$. For convenience, we also let $a_{|Q|+1} = b_{|Q|} + 1$.

We first bound the “total multiplicative decrease in p” across all intervals in Q':

Lemma 5.2. We have $\prod_{I \in Q'} p(a_i) \geq \frac{p(a)}{p(a_{i+1})} \leq \frac{1}{\epsilon}$.

Proof. Observation 3.1 implies that the total probability mass $p(I \cup I')$ on intervals I and I' is at least $\epsilon/8$. We thus have

$$\prod_{I \in Q'} \frac{p(a_i)}{p(a_{i+1})} \leq \prod_{I \in Q'} \frac{p(I_i) + p(R_i)}{p(R_i)} \leq \prod_{I \in Q'} \frac{p(I_i) + p(R_i)}{p(R_i)} = \frac{p(I_i) + p(R_i)}{p(R_i)} \leq \frac{1}{\epsilon}.$$

where the first inequality follows from Lemma 5.1, the second inequality is self-evident, the equality follows from the telescoping product, and the final inequality is because $p(I \cup I') \geq \epsilon/8$.

At this point we can bound the number of intervals produced by Decompose-MHR:

Lemma 5.3. Step 4 of Algorithm Decompose-MHR adds at most $O(\log(n/\epsilon)/\epsilon)$ intervals to Q.

Proof. We first bound the number of intervals in Q'. Let the intervals in Q' be $I'_1, I'_2, \ldots, I'_{|Q'|}$, where $I'_1 = [a'_1, b'_1]$ and $a'_1 > a'_2 > \ldots > a'_{|Q'|}$.

Observation 3.1 implies that the total probability mass $p(I \cup I')$ is at least $\epsilon/8$. Hence, $p([b'_1, n])$ is at least $\epsilon/8$ and we have $p(R'_j) \geq \epsilon/8$. For $j \geq 1$ it holds

$$(5.5) \quad p(R'_j) \geq (\epsilon/8)(1 + \epsilon/8)^{j-1}.$$

Consequently the number of intervals in Q' is bounded by $O(\log(1/\epsilon)/\epsilon)$.

Now we bound the number of intervals in Q''. We consider the value of $\prod_{I \in Q} \frac{p(a_{i+1})}{p(a_i)}$.

$$p(a_{|Q| + 1}) = \prod_{I \in Q} \frac{p(a_{i+1})}{p(a_i)} = \prod_{I \in Q'} \frac{p(a_{i+1})}{p(a_i)} \cdot \prod_{I \in Q''} \frac{p(a_{i+1})}{p(a_i)}.$$

Since $p(a_{|Q| + 1}) \leq 1$ and $p(a_i) \geq \epsilon/(4n)$, the above is at most $4n/\epsilon$; using Lemma 5.2, we get that

$$\prod_{I \in Q''} \frac{p(a_{i+1})}{p(a_i)} \leq (4n/\epsilon) \cdot (8/\epsilon) = (32n/\epsilon^2).$$

On the other hand, for every $I_i \in Q''$ we have that $\frac{p(a_{i+1})}{p(a_i)} \geq (1 + \epsilon/8)$. Consequently there can be at most $O((1/\epsilon) \log(n/\epsilon))$ intervals in Q'', and the proof is complete.

It remains only to show that \mathcal{P} is actually a flat decomposition of p:

Theorem 5.1. Algorithm Decompose-MHR outputs a partition \mathcal{P} of $[n]$ that is $(p, \epsilon, \log(n/\epsilon)/\epsilon)$-flat.

Proof. Lemma 5.3 shows that \mathcal{P} contains at most $O(\log(n/\epsilon)/\epsilon)$ intervals, so it suffices to argue that $d_{TV}(p, p^{\text{flat}(\mathcal{P})}) \leq \epsilon$.

We first consider the two rightmost intervals I and I'. If $|I| = 1$ then clearly $d_{TV}(p', p^{\text{flat}(\mathcal{P})}) = 0$, and if $|I| > 1$ then $p(I) \leq \epsilon/8$ and consequently $d_{TV}(p', p^{\text{flat}(\mathcal{P})}) \leq \epsilon/8$. Identical reasoning applies to I'. For the leftmost interval I'', we have that $p(I'') \leq \epsilon/4$, so $d_{TV}(p'', p^{\text{flat}(\mathcal{P})}) \leq \epsilon/4$. Thus, so far we have shown that the contribution to $d_{TV}(p, p^{\text{flat}(\mathcal{P})})$ from $I \cup I' \cup I''$ is at most $\epsilon/2$.

1390

Copyright © SIAM. Unauthorized reproduction of this article is prohibited.
Now for each interval I'' in Q, we have
\[
\max_{i,j \in I''} \frac{p(i)}{p(j)} \leq (1 + \varepsilon/8)^2 = 1 + \varepsilon/4 + \varepsilon^2/64.
\]
Since the total probability mass on intervals I and I' is at least $\varepsilon/8$ by Observation 3.1, the total probability mass on intervals in Q is at most $1 - \varepsilon/8$. An easy calculation using Observation 4.1 shows that the total contribution to $d_{TV}(p, p^{\text{flat}}(P))$ from intervals in Q is at most $\varepsilon/4$, and the theorem is proved.

Applying Corollary 3.1, we get our main learning result for mixtures of MHR distributions:

Corollary 5.1. (See Theorem 1.3) Let p be any k-mixture of MHR distributions over $[n]$. There is an algorithm LEARN-MHR-MIXTURE$(p, k, \varepsilon, \delta)$ that draws $O(k \log(n)/\varepsilon^4 + \log(1/\delta)/\varepsilon^2)$ samples from p and with probability at least $1 - \delta$ outputs a distribution h such that $d_{TV}(p, h) \leq \varepsilon$. Its running time is $O((\log(n))^2 \cdot (k \log(1/\varepsilon)/\varepsilon^2 + \log(1/\delta)/\varepsilon^2))$ bit operations.

Lower bounds. By adapting a lower bound of [Bir77a] (for monotone distributions over a continuous interval) it can be shown that for $\varepsilon \geq 1/n^{\Omega(1)}$, any algorithm for learning a monotone distribution over $[n]$ to accuracy ε must use $\Omega(\log(n)/\varepsilon^3)$ samples. We may consider a uniform mixture of k component distributions where the i-th distribution in the mixture is supported on and monotone non-decreasing over $[1 + (i-1)n/k, in/k]$. Each component distribution is MHR (over the entire domain). The same argument as in the log-concave case implies that, for $k \leq n^{1-\Omega(1)}$ and $\varepsilon \geq 1/n^{\Omega(1)}$, any algorithm for learning a mixture of k MHR distributions to accuracy ε must use $\Omega(k \log(n)/\varepsilon^3)$ samples.

6 Learning mixtures of unimodal and t-modal distributions

In this section we apply our general method from Section 3 to learn mixtures of unimodal (and, more generally, t-modal) distributions over $[n]$. Here our task is quite easy because of a result of L. Birgé [Bir87b] which essentially provides us with the desired flat decompositions. \footnote{We note that Birgé’s structural result was obtained as part of an efficient learning algorithm for monotone distributions; Birgé subsequently gave an efficient learning algorithm for unimodal distributions [Bir97]. However, we are not aware of work prior to ours on learning mixtures of unimodal or t-modal distributions.}

We begin by defining unimodal and t-modal distributions over $[n]$:

Definition 6.1. A distribution p over $[n]$ is unimodal if there exists $i \in [n]$ such that p is non-decreasing over $[1, i]$ and non-increasing over $[i, n]$. For $t > 1$, distribution p over $[n]$ is t-modal if there is a partition of $[n]$ into t intervals I_1, \ldots, I_t such that the sub-distributions p^{I_1}, \ldots, p^{I_t} are unimodal.

By adapting a construction of Birgé (proved in [Bir87b] for distributions over the continuous real line) to the discrete domain $[n]$, [DDS+13] established the following:

Theorem 6.1. ([DDS+13, Theorem 5]) Let p be any monotone distribution (either non-increasing or non-decreasing) over $[n]$. Then p is $(\varepsilon, O(\log(n)/\varepsilon))$-flat.

We note that it can be shown (using the same construction that is used in the $\Omega(\log(n)/\varepsilon^3)$ sample complexity lower bound of [Bir87a] for learning monotone distributions) that $O(\log(n)/\varepsilon)$ is the best possible bound for the number of intervals required in Theorem 6.1.

An immediate consequence of Theorem 6.1 is that any unimodal distribution over $[n]$ is $(\varepsilon, O(\log(n)/\varepsilon))$-flat, and any t-modal distribution over $[n]$ is $(\varepsilon, O(t \cdot \log(n)/\varepsilon))$-flat. Using Corollary 3.1 we thus obtain the following results for learning mixtures of unimodal or t-modal distributions:

Corollary 6.1. (See Theorem 1.4) For any $t \geq 1$, let p be any k-mixture of t-modal distributions over $[n]$. There is an algorithm LEARN-MULTI-MODAL-MIXTURE$(p, k, t, \varepsilon, \delta)$ that draws $O(kt \log(n)/\varepsilon^4 + \log(1/\delta)/\varepsilon^2)$ samples from p and with probability at least $1 - \delta$ outputs a distribution h such that $d_{TV}(p, h) \leq \varepsilon$. Its running time is $O((\log(n))^2 \cdot (kt \log(n)/\varepsilon^2 + \log(1/\delta)/\varepsilon^2))$ bit operations.

Lower bounds. The lower bound arguments we gave for mixtures of MHR distributions (which are based on Birgé’s lower bounds for learning monotone distributions) apply unchanged for mixtures of unimodal distributions, since every distribution which is supported on and monotone non-decreasing over $[1 + (i-1)n/k, in/k]$ is unimodal over $[n]$.

7 Conclusions and future work

This work introduces a simple general approach to learning mixtures of “structured” distributions over...
discrete domains. We illustrate the usefulness of our approach by showing it yields nearly optimal algorithms for learning mixtures of natural and well-studied classes (log-concave, MHR and unimodal) and in the process we establish novel structural properties of these classes.

Are there any other natural distribution classes for which our general framework is applicable? We suspect so. At the technical level, the linear dependence on the parameters k and t in the sample complexity of Theorem 1.1 is optimal (up to constant factors). It would be interesting to improve the dependence on $1/\varepsilon$ from cubic down to quadratic (which would be best possible) with an efficient algorithm.

References

A Proof of Proposition 1.1

At a high level, the algorithm \(A'\) works by drawing a large set of samples from the target mixture and trying all possible ways of partitioning the sample into \(k\) disjoint subsamples. For each partition of the sample it runs algorithm \(A\) over each subsample and combines the resulting hypothesis distributions (guessing the mixture weights) to obtain a hypothesis mixture distribution. Finally, a “hypothesis testing” procedure is used to identify a high-accuracy hypothesis from the collection of all hypotheses distributions obtained in this way.

More precisely, let \(p\) denote the unknown target \(k\)-mixture of distributions from \(\mathcal{C}\). Algorithm \(A'\) works as follows:

1. Draw a sample \(S = M = \tilde{O}(k/\varepsilon) \cdot m(n,\varepsilon/20) \cdot \log(5k/\delta)\) samples from \(p\).

2. For each possible way of partitioning \(S\) into \(k\) disjoint subsamples \(\bar{S} = (S_1, \ldots, S_k)\) such that each \(|S_i| \geq m(n,\varepsilon/20) \cdot \log(5k/\delta)\), run algorithm \(A\) a total of \(k\) times, using \(S_i\) as the input sample for the \(i\)-th run, to obtain hypothesis distributions \(h^S_1, \ldots, h^S_k\). For each vector \(\mu = (\mu_1, \ldots, \mu_k)\) of non-negative mixing weights that sum to 1 and satisfy \(\mu_i = (\text{integer}) \cdot \varepsilon/(20k)\), let \(h^S_\mu\) be the mixture distribution \(\sum_{i=1}^k \mu_i h^S_i\).

3. Draw \(M' = O(M \log k + k \log(k/\varepsilon)) \cdot \log(5/\delta)/\varepsilon^2\) samples from \(p\) and use them to run the “hypothesis testing” routine described in Lemma 11 of [DDS12b] over all hypotheses \(h^S_\mu\) obtained in the previous step. Output the hypothesis distribution that this routine outputs.

We now proceed with the analysis of the algorithm. Let \(p = \sum_{i=1}^k \kappa_i p_i\) denote the target \(k\)-mixture, where \(\kappa_1, \ldots, \kappa_k\) are the mixing weights and \(p_1, \ldots, p_k\) are the components. Without loss of generality we may assume that \(i = 1, \ldots, \ell\) are the components such that the mixing weights \(\kappa_1, \ldots, \kappa_\ell\) are at least \(\varepsilon/(20k)\). A standard “balls in bins” analysis (see [NS60]) implies that with probability at least \(1 - \delta/5\) the sample \(S\) contains at least \(m(n,\varepsilon/20) \cdot \log(5k/\delta)\) draws from each component \(p_1, \ldots, p_\ell\); we assume going forth that this is indeed the case. Thus there will be some partition \(S = (S_1, \ldots, S_k)\) which is such that each \(S_i\) with \(1 \leq i \leq \ell\) consists entirely of samples drawn from the component \(p_i\). For this
\(\tilde{S} \), we have that with failure probability at most \((\delta/(5k)) \cdot k \leq \delta/5 \), each hypothesis distribution \(h_i^{\tilde{S}} \)

for \(1 \leq i \leq \ell \) satisfies \(d_{TV}(p_i, h_i^{\tilde{S}}) \leq \varepsilon/20 \). Now let \(\mu^* \) denote the vector of hypothesis mixing weights (as described in Step 2) that has \(|\mu^*_i - \kappa_i| \leq \varepsilon/(20k) \) for all \(i = 1, \ldots, k \). It is not difficult to show that the hypothesis mixture distribution \(h^{\star} = h_i^{\tilde{S}} \mu^* \) satisfies \(d_{TV}(h^{\star}, p) \leq 3\varepsilon/20 < \varepsilon/6 \), where \(\varepsilon/20 \) comes from the errors \(d_{TV}(p_i, h_i^{\tilde{S}}) \) for \(i \leq \ell \), \(\varepsilon/20 \) comes from the inaccuracy in the mixing weights, and \(\varepsilon/20 \) comes from the (at most \(k \)) components \(p_j \) with \(j > \ell \) that each have mixing weight at most \(\varepsilon/(20k) \).

Thus we have established that there is at least one hypothesis distribution \(h^{\star} \) among the \(h_i^{\tilde{S}} \)'s that has \(d_{TV}(p, h^{\star}) \leq \varepsilon/6 \). There are at most \(N = k^M \cdot (20k/\varepsilon)^k \) hypotheses \(h_i^{\tilde{S}} \) generated in Step 2, so the algorithm of Lemma 11 of [DDS12b] requires \(O(\log N) \log(5/\delta)/\varepsilon^2 \leq M' \) samples, and with probability at least \(1 - \delta/5 \) it outputs a hypothesis distribution \(h \) that has \(d_{TV}(p, h) \leq \varepsilon \). The overall probability of outputting an \(\varepsilon \)-accurate hypothesis is at least \(1 - \delta \), and the proposition is proved.